Effect of in situ formation of tungsten semicarbide on the microstructure and mechanical properties of medium carbon steel composites

2021 ◽  
Vol 118 (6) ◽  
pp. 606
Author(s):  
Nandish Girishbhai Soni ◽  
Akash Ganesh Mahajan ◽  
Kaustubh Ramesh Kambale ◽  
Sandeep Prabhakar Butee

Fabrication with the in-situ formation of W2C reinforced medium carbon steel (MCS) MMC’s was attempted using W or WO3 and graphite addition to steel. The P/M route comprising milling, compaction and sintering at 1050 °C and 1120 °C respectively in 90% N2 + 10% H2 atmosphere was adopted. Both SEM and BET studies revealed the particle size to be around 100, 7 and 40 µm for MCS, W and WO3, respectively. A complete conversion of tungsten into tungsten semicarbide (W2C) was noted in XRD for the tungsten additions of ∼6, 9 and 12 wt.% with stoichiometrically balanced C (graphite) addition of 0, 0.2 and 0.4 wt.%. However, WO3 + C addition (balanced as above) revealed the partial conversion of WO3 to W2C. The peaks of Fe3C were observed only for MCS + W + C samples and not for MCS + WO3 + C samples in XRD. In SEM, the WO3 phase appeared porous and partially converted, whereas, W2C phase was dense. Sintered density improved for the addition of W, whereas it monotonically reduced for WO3 addition to MCS + C samples. Higher hardness, compressive strength, and wear resistance was noted for W addition than WO3 to MCS+C samples.

2012 ◽  
Vol 258 (7) ◽  
pp. 3214-3220 ◽  
Author(s):  
Xin Tong ◽  
Fu-hai Li ◽  
Min Kuang ◽  
Wen-you Ma ◽  
Xing-chi Chen ◽  
...  

1974 ◽  
Vol 7 (4) ◽  
pp. 491-492
Author(s):  
V. I. Pokhmurskii ◽  
R. G. Vagula ◽  
K. P. Tabinskii ◽  
Ya. S. Gribovskii

2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2021 ◽  
Vol 2144 (1) ◽  
pp. 012027
Author(s):  
S S Korableva ◽  
I R Palenov ◽  
I M Naumov ◽  
A A Smirnov ◽  
I A Kusmanova ◽  
...  

Abstract The possibility of cathodic plasma electrolytic boriding of medium-carbon steel in an aqueous solution of ammonium chloride and boric acid followed by anodic plasma electrolytic polishing in an ammonium sulfate solution on the same equipment with a change in the operating voltage is shown. The morphology and roughness of the surface, microhardness of the modified layer have been investigated. Wear resistance was studied under dry friction conditions. It has been established that cathodic boriding at 850 °C for 5–30 min leads to the hardening of the surface layer up to 1050 HV with an increase in roughness by 1.5–2.5 times and wear resistance by 3.5 times. Subsequent anodic plasma electrolytic polishing of the boriding surface leads to a decrease in roughness with an increase in wear resistance by 2.3 times.


2019 ◽  
Vol 35 ◽  
pp. 229-235 ◽  
Author(s):  
Oluwagbenga T. Johnson ◽  
Enoch N. Ogunmuyiwa ◽  
Albert U. Ude ◽  
Norman Gwangwava ◽  
Richard Addo-Tenkorang

Sign in / Sign up

Export Citation Format

Share Document