scholarly journals Corrigendum: New numerical approach for fractional differential equations

Author(s):  
Abdon Atangana ◽  
Kolade M. Owolabi
2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Qingxue Huang ◽  
Fuqiang Zhao ◽  
Jiaquan Xie ◽  
Lifeng Ma ◽  
Jianmei Wang ◽  
...  

In this paper, a robust, effective, and accurate numerical approach is proposed to obtain the numerical solution of fractional differential equations. The principal characteristic of the approach is the new orthogonal functions based on shifted Legendre polynomials to the fractional calculus. Also the fractional differential operational matrix is driven. Then the matrix with the Tau method is utilized to transform this problem into a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via some examples. It is shown that the FLF yields better results. Finally, error analysis shows that the algorithm is convergent.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2585-2600
Author(s):  
Amal Alshabanat ◽  
Bessem Samet

We consider a certain class of coupled systems of fractional differential equations involving ?-Caputo fractional derivatives. A numerical approach is provided for solving this class of systems. The method is based on operational matrix of fractional integration of an arbitrary ?-polynomial basis. A theoretical study related to the numerical scheme and the convergence of the method is presented. Next, several numerical examples are given using different types of polynomials aiming to confirm the efficiency of our approach.


Author(s):  
M. A. Firoozjaee ◽  
S. A. Yousefi ◽  
H. Jafari ◽  
D. Baleanu

In this manuscript, a new method is introduced for solving multi-order fractional differential equations. By transforming the fractional differential equations into an optimization problem and using polynomial basis functions, we obtain the system of algebraic equation. Then, we solve the system of nonlinear algebraic equation and obtain the coefficients of polynomial expansion. Also, we show the convergence of the method. Some numerical examples are presented which illustrate the theoretical results and the performance of the method.


2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5217-5239 ◽  
Author(s):  
Ravi Agarwal ◽  
Snehana Hristova ◽  
Donal O’Regan

In this paper the statement of initial value problems for fractional differential equations with noninstantaneous impulses is given. These equations are adequate models for phenomena that are characterized by impulsive actions starting at arbitrary fixed points and remaining active on finite time intervals. Strict stability properties of fractional differential equations with non-instantaneous impulses by the Lyapunov approach is studied. An appropriate definition (based on the Caputo fractional Dini derivative of a function) for the derivative of Lyapunov functions among the Caputo fractional differential equations with non-instantaneous impulses is presented. Comparison results using this definition and scalar fractional differential equations with non-instantaneous impulses are presented and sufficient conditions for strict stability and uniform strict stability are given. Examples are given to illustrate the theory.


Sign in / Sign up

Export Citation Format

Share Document