scholarly journals Convergence of a particle approximation for the quasi-stationary distribution of a diffusion process: uniform estimates in a compact soft case. p, li { white-space: pre-wrap; }

Author(s):  
Pierre Monmarché ◽  
Lucas Journel

We establish the convergences (with respect to the simulation time $t$; the number of particles $N$; the timestep $\gamma$) of a Moran/Fleming-Viot type particle scheme toward the quasi-stationary distribution of a diffusion on the $d$-dimensional torus, killed at a smooth rate. In these conditions, quantitative bounds are obtained that, for each parameter ($t\rightarrow \infty$, $N\rightarrow \infty$ or $\gamma\rightarrow 0$) are independent from the two others. p, li { white-space: pre-wrap; }

1993 ◽  
Vol 25 (01) ◽  
pp. 82-102
Author(s):  
M. G. Nair ◽  
P. K. Pollett

In a recent paper, van Doorn (1991) explained how quasi-stationary distributions for an absorbing birth-death process could be determined from the transition rates of the process, thus generalizing earlier work of Cavender (1978). In this paper we shall show that many of van Doorn's results can be extended to deal with an arbitrary continuous-time Markov chain over a countable state space, consisting of an irreducible class, C, and an absorbing state, 0, which is accessible from C. Some of our results are extensions of theorems proved for honest chains in Pollett and Vere-Jones (1992). In Section 3 we prove that a probability distribution on C is a quasi-stationary distribution if and only if it is a µ-invariant measure for the transition function, P. We shall also show that if m is a quasi-stationary distribution for P, then a necessary and sufficient condition for m to be µ-invariant for Q is that P satisfies the Kolmogorov forward equations over C. When the remaining forward equations hold, the quasi-stationary distribution must satisfy a set of ‘residual equations' involving the transition rates into the absorbing state. The residual equations allow us to determine the value of µ for which the quasi-stationary distribution is µ-invariant for P. We also prove some more general results giving bounds on the values of µ for which a convergent measure can be a µ-subinvariant and then µ-invariant measure for P. The remainder of the paper is devoted to the question of when a convergent µ-subinvariant measure, m, for Q is a quasi-stationary distribution. Section 4 establishes a necessary and sufficient condition for m to be a quasi-stationary distribution for the minimal chain. In Section 5 we consider ‘single-exit' chains. We derive a necessary and sufficient condition for there to exist a process for which m is a quasi-stationary distribution. Under this condition all such processes can be specified explicitly through their resolvents. The results proved here allow us to conclude that the bounds for µ obtained in Section 3 are, in fact, tight. Finally, in Section 6, we illustrate our results by way of two examples: regular birth-death processes and a pure-birth process with absorption.


1995 ◽  
Vol 32 (01) ◽  
pp. 25-38
Author(s):  
Servet Martínez ◽  
Maria Eulália Vares

We show that if the limiting conditional distribution for an absorbed birth–death chain exists, then the chain conditioned to non-absorption converges to a Markov chain with transition probabilities given by the matrix associated with the minimal quasi-stationary distribution.


2016 ◽  
Vol 30 (4) ◽  
pp. 622-639 ◽  
Author(s):  
Gaofeng Da ◽  
Maochao Xu ◽  
Shouhuai Xu

In this paper, we propose a novel method for constructing upper bounds of the quasi-stationary distribution of SIS processes. Using this method, we obtain an upper bound that is better than the state-of-the-art upper bound. Moreover, we prove that the fixed point map Φ [7] actually preserves the equilibrium reversed hazard rate order under a certain condition. This allows us to further improve the upper bound. Some numerical results are presented to illustrate the results.


1972 ◽  
Vol 9 (04) ◽  
pp. 821-831 ◽  
Author(s):  
E. K. Kyprianou

This paper demonstrates that, when in heavy traffic, the quasi-stationary distribution of the virtual waiting time process of both the M/G/1 and GI/M/1 queues as well as the quasi-stationary distribution of the waiting times {Wn } of the M/G/1 queue can be approximated by the same gamma distribution. What characterises this approximating gamma distribution are the first two moments of the service time and inter-arrival time distributions only. A similar approximating behaviour is demonstrated for the queue size process.


1987 ◽  
Vol 24 (04) ◽  
pp. 965-977 ◽  
Author(s):  
Ilze Ziedins

We discuss the quasi-stationary distribution obtained when a simple birth and death process is conditioned on never exceeding K. An application of this model to one-dimensional circuit-switched communication networks is described, and some special cases examined.


1992 ◽  
Vol 29 (4) ◽  
pp. 781-791 ◽  
Author(s):  
Masaaki Kijima

Let N(t) be an exponentially ergodic birth-death process on the state space {0, 1, 2, ···} governed by the parameters {λn, μn}, where µ0 = 0, such that λn = λ and μn = μ for all n ≧ N, N ≧ 1, with λ < μ. In this paper, we develop an algorithm to determine the decay parameter of such a specialized exponentially ergodic birth-death process, based on van Doorn's representation (1987) of eigenvalues of sign-symmetric tridiagonal matrices. The decay parameter is important since it is indicative of the speed of convergence to ergodicity. Some comparability results for the decay parameters are given, followed by the discussion for the decay parameter of a birth-death process governed by the parameters such that limn→∞λn = λ and limn→∞µn = μ. The algorithm is also shown to be a useful tool to determine the quasi-stationary distribution, i.e. the limiting distribution conditioned to stay in {1, 2, ···}, of such specialized birth-death processes.


Sign in / Sign up

Export Citation Format

Share Document