scholarly journals Production inventory model for controllable deterioration rate with shortages

Author(s):  
Umakanta Mishra ◽  
Jacobo Tijerina-Aguilera ◽  
Sunil Tiwari ◽  
Leopoldo Eduardo Cárdenas-Barrón

This paper deals with an economic production quantity (EPQ) inventory model for deteriorating items under preservation technology. The preservation technology is used to protect the items from deterioration. Three different production levels are considered. It is assumed that initially the production rate is at lower rate and it increases gradually over the period. This is just in order to reduce the holding cost by avoiding the larger stock quantity in the beginning of production cycle. The shortages are permitted and fully backordered. The objective of the production inventory model is to determine optimal production policy which minimizes the manufacturer’s total cost. Theoretical results are established in order to demonstrate the existence of the optimal solution and a proper solution procedure is presented. A numerical example and a sensitivity analysis are presented to validate the theoretical results. Also, some managerial insights are provided.

Author(s):  
Ayan Chakraborty ◽  
Srabani Shee ◽  
Tripti Chakrabarti

In this paper we have developed a supply chain production inventory model for deteriorating items with shortage under Fuzzy environment. The formulae for the optimal average system cost, stock level, backlog level and production cycle time are derived when the deterioration rate is very small. In reality it is seen that we cannot define all parameters precisely due to imprecision or uncertainty in the environment. So, we have defined the inventory parameter deterioration rate as triangular fuzzy numbers. The signed distance method and graded mean integration method have been used for defuzzification. Numerical examples are taken to illustrate the procedure of finding the optimal total inventory cost, stock level and backlog level. Sensitivity analysis is carried out to demonstrate the effects of changing parameter values on the optimal solution of the system.


2004 ◽  
Vol 14 (2) ◽  
pp. 219-230 ◽  
Author(s):  
G.P. Samanta ◽  
Ajanta Roy

A continuous production control inventory model for deteriorating items with shortages is developed. A number of structural properties of the inventory system are studied analytically. The formulae for the optimal average system cost, stock level, backlog level and production cycle time are derived when the deterioration rate is very small. Numerical examples are taken to illustrate the procedure of finding the optimal total inventory cost, stock level, backlog level and production cycle time. Sensitivity analysis is carried out to demonstrate the effects of changing parameter values on the optimal solution of the system.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yong He ◽  
Hongfu Huang

The paper studies a kind of deteriorating seasonal product whose deterioration rate can be controlled by investing on the preservation efforts. In contrast to previous studies, the paper considers the seasonal and deteriorating properties simultaneously. A deteriorating inventory model is developed for this problem. We also provide a solution procedure to find the optimal decisions about the preservation technology investment, the market price, and the ordering frequency. Then a case study is used to illustrate the model and the solution procedure. Finally, sensitive analysis of the optimal solution with respect to major parameters is carried out.


2019 ◽  
Vol 11 (18) ◽  
pp. 5027 ◽  
Author(s):  
Shen ◽  
Shen ◽  
Yang

The increase in carbon emissions is considered one of the major causes of global warming and climate change. To reduce the potential environmental and economic threat from such greenhouse gas emissions, governments must formulate policies related to carbon emissions. Most economists favor the carbon tax as an approach to reduce greenhouse gas emissions. This market-based approach is expected to inevitably affect enterprises’ operating activities such as production, inventory, and equipment investment. Therefore, in this study, we investigate a production inventory model for deteriorating items under a carbon tax policy and collaborative preservation technology investment from the perspective of supply chain integration. Our main purpose is to determine the optimal production, delivery, ordering, and investment policies for the buyer and vendor that maximize the joint total profit per unit time in consideration of the carbon tax policy. We present several numerical examples to demonstrate the solution procedures, and we conduct sensitivity analyses of the optimal solutions with respect to major parameters for identifying several managerial implications that provide a useful decision tool for the relevant managers. We hope that the study results assist government organizations in selecting a more appropriate carbon emissions policy for the carbon reduction trend.


2013 ◽  
Vol 684 ◽  
pp. 634-638
Author(s):  
Hsiao Ching Chen ◽  
Yao Hung Hsieh

In this study we develop a two-warehouse deteriorating production-inventory model from the perspectives of both the manufacturer and the retailer. The model considered multiple deliveries, partial backordering and inflation. The discounted cash flow (DSF) and optimization technique are also used to derive the optimal solution. A numerical example is given to validate the results of the whole production-inventory system. This study shows that multiple deliveries of the integrated system results in an optimal solution for the manufacturer-retailer supply chain system.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Umakanta Mishra ◽  
Jacobo Tijerina-Aguilera ◽  
Sunil Tiwari ◽  
Leopoldo Eduardo Cárdenas-Barrón

This article develops an inventory model for deteriorating items with controllable deterioration rate (by using preservation technology) under trade credit policy. As in practical scenarios the demand of an item is directly associated with its selling price, keeping this in mind, it is assumed to be a price dependent demand. The main objective of the inventory model is to determine jointly the optimal ordering, pricing, and preservation technology investment policies for retailer so that the total profit is maximized. The effects of key parameters on optimal solution are studied through a sensitivity analysis with the aim of examining the behavior of the inventory model with controllable deterioration under the permissible delay in payments.


Sign in / Sign up

Export Citation Format

Share Document