scholarly journals Extracting features from laser scanning point cloud

2018 ◽  
Vol 44 ◽  
pp. 00013 ◽  
Author(s):  
Vladimir Badenko ◽  
Alexander Fedotov ◽  
Dmitry Zotov

Analyses of gaps in processing of raw laser scanning data and results of bridging the gaps discovered on the basis of usage of laser scanning data for historic building information modelling are presented. Some results of the development of a unified hybrid technology for the processing, storage, access and visualization of combined laser scanning and photography data about historical buildings are analyzed. The first result of the technology application to historical building of St. Petersburg Polytechnic University shows the robustness of the approaches proposed.

2018 ◽  
Vol 33 ◽  
pp. 01047 ◽  
Author(s):  
Vladimir Badenko ◽  
Dmitry Zotov ◽  
Alexander Fedotov

In this article the analysis of gaps in processing of raw laser scanning data and results of bridging the gaps discovered on the base of usage of laser scanning data for historic building information modeling is presented. The results of the development of a unified hybrid technology for the processing, storage, access and visualization of combined laser scanning and photography data about historical buildings are analyzed. The first result of the technology application for the historical building of St. Petersburg Polytechnic University shows reliability of the proposed approaches.


2020 ◽  
Vol 12 (7) ◽  
pp. 1094 ◽  
Author(s):  
Mesrop Andriasyan ◽  
Juan Moyano ◽  
Juan Enrique Nieto-Julián ◽  
Daniel Antón

Building Information Modelling (BIM) is a globally adapted methodology by government organisations and builders who conceive the integration of the organisation, planning, development and the digital construction model into a single project. In the case of a heritage building, the Historic Building Information Modelling (HBIM) approach is able to cover the comprehensive restoration of the building. In contrast to BIM applied to new buildings, HBIM can address different models which represent either periods of historical interpretation, restoration phases or records of heritage assets over time. Great efforts are currently being made to automatically reconstitute the geometry of cultural heritage elements from data acquisition techniques such as Terrestrial Laser Scanning (TLS) or Structure From Motion (SfM) into BIM (Scan-to-BIM). Hence, this work advances on the parametric modelling from remote sensing point cloud data, which is carried out under the Rhino+Grasshopper-ArchiCAD combination. This workflow enables the automatic conversion of TLS and SFM point cloud data into textured 3D meshes and thus BIM objects to be included in the HBIM project. The accuracy assessment of this workflow yields a standard deviation value of 68.28 pixels, which is lower than other author’s precision but suffices for the automatic HBIM of the case study in this research.


2018 ◽  
Vol 4 (7) ◽  
pp. 1565 ◽  
Author(s):  
Dina Stober ◽  
Roko Žarnić ◽  
Davorin Penava ◽  
Margareta Turkalj Podmanicki ◽  
Romana Virgej-Đurašević

The benefits and challenges posed by Building Information Modelling in documenting the existing buildings comes from the development of the digital support to the needs, compatibility and interoperability of applied technologies and at the same time of the available knowledge and skills to use a wide range of necessary technologies. Within the scope of Heritage Building Information Modelling, the use of 3D views has become a common practice, often hindered by complex geometry and layered time changes of constructive systems. Implementation of BIM for heritage buildings is developed through the procedures of designing parametric objects and selecting compatible technologies to create a rich information model. The paper presents the application of the 3D BIM approach in researching, documenting and interpreting the historic building of the baroque Palace of the Slavonian General Command in the historic core of Osijek, Croatia. Applied recording technologies, laser scanning, and thermal scanning, as support for HBIM, have been chosen according to selective research goals of the Palace of the Slavonian General Command. The method of simulating non-existent constructive elements from assumptions and analogies is presented as the preceding procedure of creating a HBIM library that opens the possibility of the broader dissemination of information on the explored heritage. The results point to the advantages of the model building approach for valorisation and interpretation of constructive changes over time, through the modelling logic, closely relating to the logic of construction.


Author(s):  
A. Baik ◽  
A. Alitany ◽  
J. Boehm ◽  
S. Robson

The theory of using Building Information Modelling "BIM" has been used in several Heritage places in the worldwide, in the case of conserving, documenting, managing, and creating full engineering drawings and information. However, one of the most serious issues that facing many experts in order to use the Historical Building Information Modelling "HBIM", is creating the complicated architectural elements of these Historical buildings. In fact, many of these outstanding architectural elements have been designed and created in the site to fit the exact location. Similarly, this issue has been faced the experts in Old Jeddah in order to use the BIM method for Old Jeddah historical Building. Moreover, The Saudi Arabian City has a long history as it contains large number of historic houses and buildings that were built since the 16th century. Furthermore, the BIM model of the historical building in Old Jeddah always take a lot of time, due to the unique of Hijazi architectural elements and no such elements library, which have been took a lot of time to be modelled. This paper will focus on building the Hijazi architectural elements library based on laser scanner and image survey data. This solution will reduce the time to complete the HBIM model and offering in depth and rich digital architectural elements library to be used in any heritage projects in Al-Balad district, Jeddah City.


Author(s):  
Heliara Aparecida Costa ◽  
MARCIO PRESENTE DE SOUZA ◽  
GUILHERME QUINILATO BALDESSIN ◽  
GABRIELA ALBANO ◽  
MARCIO MINTO FABRÍCIO

A metodologia Building Information Modelling (BIM) é, atualmente, uma das principais expressões das inovações tecnológicas digitais aplicadas à Arquitetura, Engenharia, Construção e Operação. Trata-se de instrumento capaz de analisar grande quantidade de informações, por meio de um modelo virtual que gerencia o ciclo de vida do edifício, voltado as fases anteriores à construção. Para edifícios construídos tem-se o conceito de HBIM (Historic Building Information Modelling) como alternativa de gerenciamento, na qual objetos paramétricos são construídos a partir de dados de edifícios históricos. No entanto, componentes destinados ao registro histórico são raros em bibliotecas BIM e exigem grande esforço de modelagem, necessitando de protocolos e especificações relativos aos seus processos. Este artigo identifica e analisa meios para modelagem de componentes de um edifício histórico em BIM, partindo de um elemento do edifício moderno E1, localizado no campus USP São Carlos, SP. O método consistiu em revisão bibliográfica, levantamentos no local, modelagem paramétrica e avaliação das formas de desenvolvimento dos componentes, com uso de software BIM. Os resultados identificam três processos distintos de modelagem: Família de Sistema, Família Composta e Família Modelada no Local. A contribuição do artigo é a descrição e discussão dos procedimentos adotados, das potencialidades e limitações de cada processo e da sua aplicação a estudos similares. Os elementos produzidos foram disponibilizados em um repositório público, a fim de possibilitar seu registro, documentação e uso em projetos de gestão, manutenção, preservação e reconstrução do patrimônio estudado, e também como modelo exemplificado para bibliotecas HBIM a serem futuramente construídas.


2020 ◽  
Vol 10 (4) ◽  
pp. 1235 ◽  
Author(s):  
Massimiliano Pepe ◽  
Domenica Costantino ◽  
Alfredo Restuccia Garofalo

The aim of this work is to identify an efficient pipeline in order to build HBIM (heritage building information modelling) and create digital models to be used in structural analysis. To build accurate 3D models it is first necessary to perform a geomatics survey. This means performing a survey with active or passive sensors and, subsequently, accomplishing adequate post-processing of the data. In this way, it is possible to obtain a 3D point cloud of the structure under investigation. The next step, known as “scan-to-BIM (building information modelling)”, has led to the creation of an appropriate methodology that involved the use of Rhinoceros software and a few tools developed within this environment. Once the 3D model is obtained, the last step is the implementation of the structure in FEM (finite element method) and/or in HBIM software. In this paper, two case studies involving structures belonging to the cultural heritage (CH) environment are analysed: a historical church and a masonry bridge. In particular, for both case studies, the different phases were described involving the construction of the point cloud and, subsequently, the construction of a 3D model. This model is suitable both for structural analysis and for the parameterization of rheological and geometric information of each single element of the structure.


2021 ◽  
Vol 121 ◽  
pp. 103449
Author(s):  
Rocío Mora ◽  
Luis Javier Sánchez-Aparicio ◽  
Miguel Ángel Maté-González ◽  
Joaquín García-Álvarez ◽  
María Sánchez-Aparicio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document