scholarly journals Role of Differentiation of Liver Sinusoidal Endothelial Cells in Progression and Regression of Hepatic Fibrosis in Rats

2012 ◽  
Vol 142 (4) ◽  
pp. 918-927.e6 ◽  
Author(s):  
Guanhua Xie ◽  
Xiangdong Wang ◽  
Lei Wang ◽  
Lin Wang ◽  
Roscoe D. Atkinson ◽  
...  
2021 ◽  
Author(s):  
Zhigang Sun ◽  
Tianyi Dong ◽  
Zhun Zhang ◽  
Tiantian Wang ◽  
Chenyu Zhang ◽  
...  

Abstract Background Although VEGF can maintain the normal phenotype of liver sinusoidal endothelial cells (LSECs), it has also been reported that VEGF exacerbates cirrhosis. The role of VEGF in the progression and recovery of cirrhosis has still remained controversial.Methods We established a cirrhotic rat model by thioacetamide that was used as drinking water; besides, 0, 1, 2, and 4 μg VEGF165 were then continuously injected into the rats. The serum level of hyaluronic acid was measured by ELISA at 0, 1, and 4 weeks, separately. Serum levels of ALT, AST, direct bilirubin, indirect bilirubin, and ALB were detected by an automatic biochemical analyzer. In addition, the levels of VEGF165, CD44, MMP9, MMP2, HIF-1α, and endothelin were detected by Western blotting. The expression level of CD44 in LSECs was detected by immunohistochemistry. Changes of fenestrations of LSECs and basement membranes of blood vessels were observed by transmission electron microscopy. Results With the increase of dosage and duration of VEGF treatment, the levels of liver function markers in the serum, the levels of CD44, HIF-1α, hydroxyproline and endothelin were significantly improved. With determination of the serum level of hydroxyproline in the blood, it was disclosed that the mentioned level was markedly decreased. In the Sirius Red staining, the stained red area was gradually reduced. Images captured by transmission electron microscopy also confirmed that the ultrastructure of LSECs tended to be normal.Conclusion VEGF165 can accelerate the resolution of liver fibrosis by promoting fenestration structure formation in LSECs, as well as promoting material exchange between sinusoids and hepatocytes. Our findings may provide a new insight for the study of the role of VEGF in liver fibrosis.


2015 ◽  
Vol 95 (10) ◽  
pp. 1130-1144 ◽  
Author(s):  
Masashi Miyao ◽  
Hirokazu Kotani ◽  
Tokiko Ishida ◽  
Chihiro Kawai ◽  
Sho Manabe ◽  
...  

2017 ◽  
Vol 11 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Mingxing Xu ◽  
Xuehua Wang ◽  
Yong Zou ◽  
Yuesi Zhong

Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 395
Author(s):  
Kunimaro Furuta ◽  
Qianqian Guo ◽  
Petra Hirsova ◽  
Samar H. Ibrahim

Nonalcoholic steatohepatitis (NASH) has become a growing public health problem worldwide, yet its pathophysiology remains unclear. Liver sinusoidal endothelial cells (LSEC) have unique morphology and function, and play a critical role in liver homeostasis. Emerging literature implicates LSEC in many pathological processes in the liver, including metabolic dysregulation, inflammation, angiogenesis, and carcinogenesis. In this review, we highlight the current knowledge of the role of LSEC in each of the progressive phases of NASH pathophysiology (steatosis, inflammation, fibrosis, and the development of hepatocellular carcinoma). We discuss processes that have important roles in NASH progression including the detrimental transformation of LSEC called “capillarization”, production of inflammatory and profibrogenic mediators by LSEC as well as LSEC-mediated angiogenesis. The current review has a special emphasis on LSEC adhesion molecules, and their key role in the inflammatory response in NASH. Moreover, we discuss the pathogenic role of extracellular vesicles and their bioactive cargos in liver intercellular communication, inflammation, and fibrosis. Finally, we highlight LSEC-adhesion molecules and derived bioactive product as potential therapeutic targets for human NASH.


2010 ◽  
Vol 185 (4) ◽  
pp. 2200-2208 ◽  
Author(s):  
Michael K. Connolly ◽  
Andrea S. Bedrosian ◽  
Ashim Malhotra ◽  
Justin R. Henning ◽  
Junaid Ibrahim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document