scholarly journals Sox4 Promotes Atoh1-Independent Intestinal Secretory Differentiation Toward Tuft and Enteroendocrine Fates

2018 ◽  
Vol 155 (5) ◽  
pp. 1508-1523.e10 ◽  
Author(s):  
Adam D. Gracz ◽  
Leigh Ann Samsa ◽  
Matthew J. Fordham ◽  
Danny C. Trotier ◽  
Bailey Zwarycz ◽  
...  
Author(s):  
W.N. Bentham ◽  
V. Rocha

It has been an interest of our lab to develop a mammary epethelial cell culture system that faithfully duplicates the in vivo condition of the lactating gland. Since the introduction of collagen as a matrix on which cells are cultivated other E.C.M. type matrices have been made available and are used in many cell culture techniques. We have previously demonstrated that cells cultured on collagen and Matrigel do not differentiate as they do in vivo. It seems that these cultures often produce cells that show a disruption in the secretory process. The appearance of large ribosomal studded vesicles, that specifically label with antibody to casein, suggest an interruption of both protein maturation and secretion at the E.R. to golgi transition. In this report we have examined cultures on collagen and Matrigel at relative high and low seeding densities and compared them to cells from the in vivo condition.


2002 ◽  
Vol 122 (3) ◽  
pp. 270-275 ◽  
Author(s):  
Jae Young Choi ◽  
Chang-Hoon Kim ◽  
Won-Sang Lee ◽  
Hee-Nam Kim ◽  
Kyoung-Seob Song ◽  
...  

Development ◽  
2012 ◽  
Vol 140 (1) ◽  
pp. 117-125 ◽  
Author(s):  
E. S. Milani ◽  
H. Brinkhaus ◽  
R. Dueggeli ◽  
I. Klebba ◽  
U. Mueller ◽  
...  

2021 ◽  
Author(s):  
Diego Y. Grinman ◽  
Kata Boras-Granic ◽  
Farzin M. Takyar ◽  
Pamela Dann ◽  
Julie R. Hens ◽  
...  

Background: Parathyroid hormone-related protein (PTHrP) is required for embryonic breast development and has important functions during lactation, when it is produced by alveolar epithelial cells and secreted into the maternal circulation to mobilize skeletal calcium used for milk production. PTHrP is also produced by breast cancers and GWAS studies suggest that it influences breast cancer risk. However, the exact functions of PTHrP in breast cancer biology remain unsettled. Methods: We developed a tetracyline-regulated, MMTV (mouse mammary tumor virus)-driven model of PTHrP overexpression in mammary epithelial cells (Tet-PTHrP mice) and bred these mice with the MMTV-PyMT (polyoma middle tumor-antigen) breast cancer model to analyze the impact of PTHrP overexpression on normal mammary gland biology and in breast cancer progression. Results: Overexpression of PTHrP in luminal epithelial cells caused alveolar hyperplasia and secretory differentiation of the mammary epithelium with milk production. This was accompanied by activation of Stat5 and increased expression of E74-like factor-5 (Elf5). In MMTV-PyMT mice, overexpression of PTHrP (Tet-PTHrP;PyMT mice) shortened tumor latency and accelerated tumor growth, ultimately reducing overall survival. Tumors overproducing PTHrP also displayed increased expression of nuclear pSTAT5 and Elf5, increased expression of markers of secretory differentiation and milk constituents, and histologically resembled secretory carcinomas of the breast. Overexpression of PTHrP within cells isolated from tumors, but not PTHrP exogenously added to cell culture media, led to activation of STAT5 and milk protein gene expression. In addition, neither ablating the Type 1 PTH/PTHrP receptor (PTH1R) in epithelial cells or treating Tet-PTHrP;PyMT mice with an anti-PTH1R antibody prevented secretory differentiation or altered tumor latency. These data suggest that PTHrP acts in a cell-autonomous, intracrine manner. Finally, expression of PTHrP in human breast cancers is associated with expression of genes involved in milk production and STAT5 signaling. Conclusions: Our study suggests that PTHrP promotes pathways leading to secretory differentiation and proliferation in both normal mammary epithelial cells and in breast tumor cells.


Sign in / Sign up

Export Citation Format

Share Document