Flow cytometric enumeration and immunophenotyping of hematopoietic stem and progenitor cells

2001 ◽  
Vol 38 (2) ◽  
pp. 139-147
Author(s):  
Jan W. Gratama ◽  
D. Robert Sutherland ◽  
Michael Keeney
Cytometry ◽  
1998 ◽  
Vol 34 (3) ◽  
pp. 128-142 ◽  
Author(s):  
Jan W. Gratama ◽  
Alberto Orfao ◽  
David Barnett ◽  
Bruno Brando ◽  
Andreas Huber ◽  
...  

2021 ◽  
Author(s):  
Daniel E. Morales-Mantilla ◽  
Bailee Kain ◽  
Duy Le ◽  
Anthony Flores ◽  
Silke Paust ◽  
...  

Sepsis accounts for 1 in 5 deaths worldwide, and new therapeutic strategies to reduce sepsis- related mortality are urgently needed. Since hematopoietic stem and progenitor cells (HSPCs) are responsible for producing blood and immune cells, including in response to immunological stress, we explored their potential for treating sepsis. In a mouse model of Group A Streptococcus (GAS)-induced sepsis, severe immunological stress was associated with significant depletion of bone marrow HSPCs and mortality within approximately 5-7 days. We hypothesized that the inflammatory environment of GAS infection drives rapid HSPC differentiation and depletion that can be rescued by infusion of donor HSPCs. Indeed, infusion of 10,000 naïve HSPCs into GAS-infected mice resulted in rapid myelopoiesis and a 50-60% increase in overall survival. Surprisingly, mice receiving donor HSPCs displayed a similar pathogen load compared to untreated mice. Flow cytometric analysis revealed a significantly increased number of myeloid-derived suppressor cells in HSPC-infused mice, which correlated with reduced inflammatory cytokine levels and restored HSPC levels. These findings suggest that HSPCs play an essential immunomodulatory role that may translate into new therapeutic strategies for sepsis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 140-140 ◽  
Author(s):  
Annalisa Mupo ◽  
Vijitha Sathiaseelan ◽  
Michael Seiler ◽  
David Kent ◽  
Shouyong Peng ◽  
...  

Abstract Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized by dysplastic hematopoiesis and peripheral blood cytopenias. Recently, somatic mutations affecting components of the spliceosomal machinery have been discovered in the majority of MDS patients. SF3B1 mutations are most frequent and strongly correlate with the presence of bone marrow ring sideroblasts and a favorable prognosis. SF3B1 mutations, including the K700E substitution which accounts for more than 50% of all mutations, are missense, heterozygous and cluster in a hotspot within the heat domain of the protein suggesting that they are gain-of-function variants. The molecular effects of SF3B1 mutations and the mechanisms through which they drive clonal expansion and dyserythropoiesis remain obscure. Therefore, to assess their molecular and phenotypic consequences, we generated a mouse model carrying a conditional floxed knock-in allele (Sf3b1flox-K700E/+) by homologous recombination of JM8 murine embryonic stem cells. To induce expression of Sf3b1 K700E in adult hematopoietic stem and progenitor cells, Sf3b1flox-K700E/+/Mx1-Cre+ were injected with pIpC from 4-8 weeks of age. Here we report the initial characterization of these animals. Monthly peripheral blood counts from mutants and wild-type (WT) littermates starting one month post-pIpC injection showed a reduction in hemoglobin levels (at 8 weeks WT=17g/dl mut=14.5g/dl, p<0.03). Additionally, flow cytometric analysis of bone marrow samples demonstrated a modest but consistent decrease in late erythroid progenitor cells (Ter119+ and CD71-/low). The myeloid compartment showed relative expansion of Gr1+/Mac1+ and Mac1+ cells whereas analysis of hematopoietic stem and progenitor cells (HSPCs) revealed a decrease in HSCs (% of total events WT=0.04%; Sf3b1flox-K700E/+=0.01%) in mutant mice. In competitive transplantation experiments into sub-lethally irradiated syngeneic recipients we observed a lower engraftment potential of Sf3b1flox-K700E Lin-ve HSPCs (CD45.2) compared to wild-type cells (CD45.1). Flow cytometric analysis of peripheral blood of recipient animals showed that Sf3b1flox-K700E cells contributed more to the myeloid lineage than wild-type cells (Sf3b1flox-K700E Mac1+/Gr1+ 8.95%; Mac1+ 15% vs WT Mac1+/Gr1+ 4.08%; Mac1+ 5.57%). At a median follow-up of 56 weeks, mutant animals did not show decreased survival or signs of illness as compared to WT controls. Finally, as Sfb31 mutations are predicted to affect splicing of pre-mRNA and consequently alter the gene expression, we performed RNAseq analysis in unselected and Lin-ve bone-marrow cells from mutant and controls animals. Comparison between wt and mutant samples showed deregulated expression of genes implicated in human MDS (Mmp9, Puma, Bcl2l1). We then looked at the pattern of aberrant splicing promoted by Sf3b1flox-K700E, and found that mutant animals have an increased use of cryptic 3'' splice sites (ss) throughout their genome. We showed that the majority of these alternative 3' ss are novel and we characterized them as being located 15 to 24 nucleotides upstream from the canonical 3' ss and associated with sequence features including a shorter polypyrimidine tract and an enrichment of adenines -8 to -18 bases upstream of the cryptic 3' ss. Interestingly, similar features have been reported in human cancers with SF3B1 hotspot mutations. We predict that ~33% of the mRNAs affected by aberrant splicing will include an aberrant premature termination codon, promoting RNA degradation through nonsense-mediated decay. In conclusion, our conditional Sf3b1K700E knock-in mouse is a faithful molecular model of the consequences of these mutations in the mouse hematopoietic system. The mild phenotype we observe in comparison to SF3B1-mutant human MDS may be explained by the requirement for additional mutations to progress to overt MDS and is more reminiscent of SF3B1-associated clonal hemopoiesis, relatively common phenomenon in elderly humans without overt hematological abnormalities. Additionally, our initial characterization of novel splice sites preferentially recognised by the mutant Sf3b1 protein suggests that transcriptional consequences of the mutation may differ between species, dependant on the degree of conservation of the relevant intronic regions. Disclosures Seiler: H3 Biomedicine: Employment. Peng:H3 Biomedicine: Employment. Buonamici:H3 Biomedicine: Employment. Campbell:14M genomics: Other: Co-founder and consultant.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3580-3580
Author(s):  
Atsushi Sato ◽  
Hideyo Hirai ◽  
Asumi Yokota ◽  
Akihiro Tamura ◽  
Tsukimi Shoji ◽  
...  

Abstract CCAAT Enhancer Binding Protein b (C/EBPb) is a leucine zipper type transcription factor. While C/EBPa plays a critical role in maintaining steady-state granulopoiesis, C/EBPb is required for stress-induced granulopoiesis (Hirai et al., 2006). We have been focusing on the functions of C/EBPb in the regulation of hematopoietic stem and progenitor cells (HSPCs) especially under stressed conditions. Last year in this meeting, we have shown that 1) C/EBPb was upregulated at protein level in HSPCs after hematopoietic stresses, 2) C/EBPb was required for initial expansion of HSPCs after transplantation, and 3) C/EBPb promoted exhaustion of HSPCs under repetitive hematopoietic stresses (56th ASH, abstract #67850). Here, we further investigated the significance of C/EBPb in cell cycle regulation of HSPCs and the distinct roles of C/EBPb isoforms in HSPCs during regenerative conditions. To clarify the involvement of C/EBPb in cell cycle regulation of HSPCs, we compared the cell cycle status of wild-type (WT) and Cebpb knockout (KO) HSPCs by intracellular Ki67 staining and short-term BrdU incorporation assay in combination with multi-color flow cytometric analysis. In order to exclude the difference in the bone marrow microenvironment, CD45.2+ WT or Cebpb KO bone marrow (BM) cells were transplanted into lethally irradiated CD45.1+ WT mice. At steady state (12 weeks after the BM transplantation), the cell cycle status of Cebpb KO HSPCs was identical to that of WT HSPCs. Then cell cycle status of HSPCs was assessed at various time points during regeneration after intraperitoneal administration of 5-fluorouracil (5-FU, 150mg/kg). We found that significantly more Cebpb KO HSPCs remained in the G0 phase than WT HSPCs (in LT-HSCs on days 3-10; in MPPs on days 6-12). Significantly less Cebpb KO HSPCs were BrdU+ and were in the S/G2/M phase on day 7. These findings suggest that C/EBPb, in a cell-intrinsic manner, facilitates cell cycle entry, progression and consequent earlier expansion of HSPCs in response to hematopoietic stresses. Next, we investigated the distinct roles of C/EBPb isoforms in regulation of HSPCs. C/EBPb is a unique single exon gene and utilization of three different initiating codons result in three distinct isoforms. Liver-enriched activating protein* (LAP*) and LAP are the longer isoforms containing transactivating domains, DNA binding and dimerization domains, and liver-enriched inhibitory protein (LIP) is the shortest isoform which lacks the transactivating domains. In order to examine the expression pattern of C/EBPb isoforms in vivo in scarce populations of regenerating HSPCs, we developed a novel flow cytometric method to distinguish the cells predominantly expressing shorter isoform (LIP) from the cells expressing both LIP and the longer isoforms (LAP* and LAP) by intracellular double staining. Using this method, we found that predominantly LIP-expressing cells transiently emerged within MPP fraction in the regenerating bone marrow (on days 5-6 after administration of 5-FU, Figure below), while overall C/EBPb expression levels were significantly upregulated in most cells. To examine the roles of respective C/EBPb isoforms in regulation of HSPCs, EML cells, a murine hematopoietic stem cell line, were retrovirally transduced with one of the C/EBPb isoforms and the transduced cells were subjected to further analysis (vectors are kind gifts from Dr Watanabe-Okouchi N and Dr Kurokawa M, Tokyo Univ). LIP-expressing EML cells were more proliferative and actively cycling than EML cells transduced with a control vector, whereas the proliferation of LAP*- or LAP-expressing cells were markedly suppressed. LIP-expressing cells remained undifferentiated status (c-kithigh CD11b-) for more than 2 weeks, while LAP*- or LAP-expressing cells rapidly differentiated into c-kitlow CD11b+ myeloid cells and eventually exhausted within a week. These results indicate LIP plays quite distinct roles from LAP* and LAP in regulation of HSPCs. Collectively, our data suggest that C/EBPb isoforms distinctively and collaboratively regulate HSPCs in regenerative conditions: early transient elevation of LIP contributes to cell cycle activation and rapid expansion of HSPC population, which is in turn converted into supply of mature myeloid cells by more abundant upregulation of LAP* and LAP. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document