C/EBPβ Isoforms Distinctively and Collaboratively Regulate the Behavior of Hematopoietic Stem and Progenitor Cells in Regenerative Conditions

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3580-3580
Author(s):  
Atsushi Sato ◽  
Hideyo Hirai ◽  
Asumi Yokota ◽  
Akihiro Tamura ◽  
Tsukimi Shoji ◽  
...  

Abstract CCAAT Enhancer Binding Protein b (C/EBPb) is a leucine zipper type transcription factor. While C/EBPa plays a critical role in maintaining steady-state granulopoiesis, C/EBPb is required for stress-induced granulopoiesis (Hirai et al., 2006). We have been focusing on the functions of C/EBPb in the regulation of hematopoietic stem and progenitor cells (HSPCs) especially under stressed conditions. Last year in this meeting, we have shown that 1) C/EBPb was upregulated at protein level in HSPCs after hematopoietic stresses, 2) C/EBPb was required for initial expansion of HSPCs after transplantation, and 3) C/EBPb promoted exhaustion of HSPCs under repetitive hematopoietic stresses (56th ASH, abstract #67850). Here, we further investigated the significance of C/EBPb in cell cycle regulation of HSPCs and the distinct roles of C/EBPb isoforms in HSPCs during regenerative conditions. To clarify the involvement of C/EBPb in cell cycle regulation of HSPCs, we compared the cell cycle status of wild-type (WT) and Cebpb knockout (KO) HSPCs by intracellular Ki67 staining and short-term BrdU incorporation assay in combination with multi-color flow cytometric analysis. In order to exclude the difference in the bone marrow microenvironment, CD45.2+ WT or Cebpb KO bone marrow (BM) cells were transplanted into lethally irradiated CD45.1+ WT mice. At steady state (12 weeks after the BM transplantation), the cell cycle status of Cebpb KO HSPCs was identical to that of WT HSPCs. Then cell cycle status of HSPCs was assessed at various time points during regeneration after intraperitoneal administration of 5-fluorouracil (5-FU, 150mg/kg). We found that significantly more Cebpb KO HSPCs remained in the G0 phase than WT HSPCs (in LT-HSCs on days 3-10; in MPPs on days 6-12). Significantly less Cebpb KO HSPCs were BrdU+ and were in the S/G2/M phase on day 7. These findings suggest that C/EBPb, in a cell-intrinsic manner, facilitates cell cycle entry, progression and consequent earlier expansion of HSPCs in response to hematopoietic stresses. Next, we investigated the distinct roles of C/EBPb isoforms in regulation of HSPCs. C/EBPb is a unique single exon gene and utilization of three different initiating codons result in three distinct isoforms. Liver-enriched activating protein* (LAP*) and LAP are the longer isoforms containing transactivating domains, DNA binding and dimerization domains, and liver-enriched inhibitory protein (LIP) is the shortest isoform which lacks the transactivating domains. In order to examine the expression pattern of C/EBPb isoforms in vivo in scarce populations of regenerating HSPCs, we developed a novel flow cytometric method to distinguish the cells predominantly expressing shorter isoform (LIP) from the cells expressing both LIP and the longer isoforms (LAP* and LAP) by intracellular double staining. Using this method, we found that predominantly LIP-expressing cells transiently emerged within MPP fraction in the regenerating bone marrow (on days 5-6 after administration of 5-FU, Figure below), while overall C/EBPb expression levels were significantly upregulated in most cells. To examine the roles of respective C/EBPb isoforms in regulation of HSPCs, EML cells, a murine hematopoietic stem cell line, were retrovirally transduced with one of the C/EBPb isoforms and the transduced cells were subjected to further analysis (vectors are kind gifts from Dr Watanabe-Okouchi N and Dr Kurokawa M, Tokyo Univ). LIP-expressing EML cells were more proliferative and actively cycling than EML cells transduced with a control vector, whereas the proliferation of LAP*- or LAP-expressing cells were markedly suppressed. LIP-expressing cells remained undifferentiated status (c-kithigh CD11b-) for more than 2 weeks, while LAP*- or LAP-expressing cells rapidly differentiated into c-kitlow CD11b+ myeloid cells and eventually exhausted within a week. These results indicate LIP plays quite distinct roles from LAP* and LAP in regulation of HSPCs. Collectively, our data suggest that C/EBPb isoforms distinctively and collaboratively regulate HSPCs in regenerative conditions: early transient elevation of LIP contributes to cell cycle activation and rapid expansion of HSPC population, which is in turn converted into supply of mature myeloid cells by more abundant upregulation of LAP* and LAP. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.

2004 ◽  
Vol 5 (1) ◽  
pp. 50-60
Author(s):  
Hirokazu Tanaka . ◽  
Itaru Matsumura . ◽  
Yuzuru Kanakura .

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1284-1284
Author(s):  
Zhongfa Yang ◽  
Karen Drumea ◽  
James Cormier ◽  
Junling Wang ◽  
Xuejun Zhu ◽  
...  

Abstract Abstract 1284 GABP is an ets transcription factor that regulates genes which are required for normal hematopoietic development. In myeloid cells, GABP is an essential component of a retinoic acid-inducible enhanceosome that mediates granulocytic gene expression and, in lymphoid cells, GABP regulates expression of IL7-R and the essential transcription factor, Pax5. GABP is a tetrameric complex that includes GABPa, which binds DNA via its ets domain, and GABPb, which contains the transcription activation domain. Genetic disruption of mouse Gabpa caused early embryonic lethality. We created mice in which loxP recombination sites flank exons that encode the Gabpa ets domain, and bred them to mice that bear the Mx1Cre recombinase; injection with pIC induced Cre expression and efficiently deleted Gabpa in hematopoietic cells. One half of the Gabpa knock-out (KO) mice died within two weeks of pIC injection in association with widespread visceral hemorrhage. Gabpa KO mice exhibited a rapid loss of mature granulocytes, and residual myeloid cells exhibited myelodysplasia due, in part, to regulation by Gabp of the transcriptional repressor, Gfi-1. We used bone marrow transplantation to demonstrate that the defect in Gabpa null myeloid cells is cell intrinsic. Although hematopoietic progenitor cells in Gabpa KO bone marrow were decreased more than 100-fold compared to pIC treated control mice, there was not a statistically significant difference in the numbers of Lin−c-kit+Sca-1− hematopoietic stem cells (HSCs) between KO and control mice. Genetic disruption of Gfi-1 disruption in HSCs caused increased cell cycle activity – an effect that is diametrically opposite of the effect of Gabpa KO; this suggests that the effect of Gabpa on HSCs is not due to its control of Gfi-1. In contrast, Gabpa KO HSCs exhibited a marked decrease in cell cycle activity, but did not demonstrate increased apoptosis. The defects in S phase entry of Gabpa null HSCs are reminiscent of the cell cycle defects in Gabpa null fibroblasts, in which expression of Skp2 E3 ubiquitin ligase, which controls degradation of the cyclin dependent kinase inhibitors (CDKIs) p21 and p27, was markedly reduced following Gabpa disruption. We showed that Gabpa KO cells express reduced levels of Skp2. We propose that GABP controls self-renewal and proliferation of mouse bone marrow stem and progenitor cells, in part, through its regulation of Skp2. Thus, Gabpa is a key regulator of myeloid differentiation through its control of Gfi-1, but it is required for cell cycle activity of HSCs, by a distinct effect that may be due to its control of Skp2 and CDKIs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4115-4115
Author(s):  
Stefan Wirths ◽  
Stefanie Bugl ◽  
Markus P. Radsak ◽  
Melanie Märklin ◽  
Martin R. Müller ◽  
...  

Abstract Granulopoietic homeostasis is regulated at steady-state to supply sufficient numbers of pooled and circulating neutrophils to maintain barrier function against commensal flora. In addition, upon pathogenic microbial challenge, an increased formation of neutrophils is induced, termed ‘emergency granulopoiesis’. Antibody-mediated reduction of neutrophil numbers in steady-state induces a feedback loop leading to an increase of bone marrow granulopoiesis with expansion of hematopoetic stem and progenitor cells. This feedback loop was demonstrated to depend on TLR4 and TRIF, but not MyD88 signaling (Bugl et al. Blood 2013). In contrast, emergency granulopoiesis was shown to be dependent on MyD88 signaling in endothelial cells (Boettcher et al. Blood 2014). Bone marrow mesenchymal stromal cells (MSC) are niche-forming cells, harboring and regulating hematopoiesis. Upon steady-state neutropenia an increase of niche size was observed. Here we investigated, whether niche-forming MSC act as sensors of pathogen-associated molecular patterns (PAMPs) and induce granulopoietic cytokines to stimulate expansion of adjacent hematopoietic stem and progenitor cells. MSC of C57BL/6 and TLR4-KO mice were cultured in vitro and treated with LPS for 24 hours. Cells were harvested and qRT-PCR for G-CSF, TLR4, MyD88, TRIF, GM-CSF, IL-1β, IL-18 and Casp-1 was performed After treatment with LPS, RNA of granulopoietic cytokines G-CSF and GM-CSF were massively up regulated in MSC of WT mice. Upstream regulating, inflammasome components IL-1ß and caspase-1 RNA levels increased as well, with little changes in IL-18, TLR4, MyD88 and TRIF. Unexpectedly, TLR4-KO MSC up regulated transcription of IL-1β and G-CSF upon LPS stimulation as well, and caspase-1 was found to be strongly up-regulated in unstimulated TLR4-KO compared to WT MSC. In summary, bone marrow stromal cells are found to be PAMP-sensing and secrete cytokines that regulate granulopoiesis. TLR4-independent sensing of LPS by MSC might correspond to the alternative noncanonical inflammasome pathway recently described (Kayagaki et al. Science 2013). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 273-273
Author(s):  
Nicola Daniele Andina ◽  
Mayuresh Sarangdhar ◽  
Aubry Tardivel ◽  
Giuseppe Bombaci ◽  
Mahmoud Hallal ◽  
...  

Hematopoietic stem cells (HSC) in higher vertebrate species, especially in mammals, maintain hematopoiesis throughout adult life and require critical cell cycle regulation for their self-renewal and cell fate decisions. Although cell cycle pathways are quite conserved across animal species, it is unknown whether a higher vertebrate specific cell cycle regulation exists in adult mammalian HSCs. Recently, we have published that Ribonuclease inhibitor (RNH1) regulates erythropoiesis by controlling GATA1 mRNA translation. Here, we report that RNH1, which is present only in higher vertebrates regulates HSC cell cycle and HSC function. To study the role of RNH1 in hematopoiesis, we generated hematopoietic-specific knockout mice by backcrossing Rnh1FL/FL mice with Vav1-iCre and Mx1-Cre mice, respectively. Rnh1-deficiency (Rnh1FL/FLVav1-iCre mice) resulted in hematopoietic alterations resembling emergency myelopoiesis. At 15 weeks of age Rnh1-deficient mice had reduced hemoglobin levels (144.4 ± 2.6 vs 165.0 ± 4.2 g/L, p = 0.005), decreased lymphocytes (4.1 ± 0.8 vs 9.6 ± 1.6 K/µL, p = 0.023), increased neutrophils (3.2 ± 0.6 vs 1.5 ± 0.2 K/µL, p = 0.046) and monocytes (0.65 ± 0.05 vs 0.09 ± 0.02 K/µL, p = 0.0001) in the peripheral blood. Total bone-marrow (BM) cellularity was similar in wild type andRnh1-deficient mice, however the number of erythroid cells and lymphoid cells (T and B cells) was significantly decreased, whereas myeloid cells were significantly increased. Rnh1-deficient spleens were significantly larger than wild type controls and showed extramedullary hematopoiesis. Surprisingly, although Rnh1-deficient mice showed myeloproliferation they survived normally and did not show progression to leukemia. However, they did not tolerate even little stress, such as 35 µg LPS administration, which lead to early mortality. We analysed the progenitor populations in the BM. In line with the myelopoiesis dominant phenotype granulocyte-monocyte progenitor (GMP) cell numbers were increased but common lymphoid progenitor (CLP) and megakaryocyte-erythrocyte progenitor (MEP) cell numbers were decreased. Cell extrinsic factors such as growth factors and the bone marrow niche play a critical role in shaping lineage choice. To exclude this, we performed bone marrow transplantation experiments (BMT) by transplanting wild type (Rnh1FL/FL) and Rnh1-deficient (Rnh1FL/FLMx1-Cre+) bone marrow into lethally irradiated CD45.1 congenic mice. After reconstitution Rnh1 was deleted by administration of polyinosinic:polycytidylic acid (polyI:C). We observed a similar myelopoiesis dominant phenotype in Rnh1-deleted mice. Interestingly, we found increased numbers of long term HSCs (LT-HSCs) and short term HSCs (ST-HSCs) in Rnh1-deficient mouse BM, suggesting that RNH1 could affect HSC function. Supporting this Rnh1-deficient HSCs failed to engraft lethally irradiated mice in competitive BMT experiments. Furthermore, Rnh1-deficient HSCs produced significantly less and smaller colonies in in-vitro colony forming cell (CFC) assays. Transcriptome analysis showed increased expression of genes related to cell cycle, kinetochore, DNA damage and decreased expression of genes related to stem cell function in Rnh1-deficient LT-HSCs and ST-HSCs. Corroborating this, Rnh1-deficient LT-HSCs and ST-HSCs showed increased S/G2/M phase in cell cycle analysis. In line with this, at the molecular level, we found that RNH1 directly binds to cell-cycle related proteins such as cyclin-dependent kinase 1 (CDK1), cell-division cycle protein 20 (CDC20) and mitotic checkpoint protein BUB3, suggesting direct involvement of RNH1 in cell cycle regulation. Confirming this, pharmacological inhibition of CDK1 (RO-3306, 10 µM) in Rnh1-deficinet ST-HSCs restored colony size in CFC assays, suggesting that RNH1 and CDK1 inhibition have a synergistic effect in ST-HSCs. In summary, our results demonstrate that RNH1, which is present only in higher vertebrates, is essential for HSC cell cycle regulation and steady state hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 637-637
Author(s):  
Nicole Baeumer ◽  
Sven Diederichs ◽  
Steffen Koschmieder ◽  
Boris V. Skryabin ◽  
Feng Zhang ◽  
...  

Abstract Cell cycle progression is driven by the kinase activity of cyclin/CDK complexes. Dysregulation of the cell cycle leads to altered cell growth and contributes to tumorigenesis. Recently, we identified p26INCA1 as novel interaction partner of Cyclin A1/CDK2. Here, we characterize the phenotype of Inca1-null mice to uncover the cellular and molecular function of Inca1. Inca1-knockout mice were viable and fertile. FACS analyses revealed that aging mutant animals harbored an increased hematopoietic stem cell (HSC) pool. Bone marrow cells of young mice exhibited enhanced clonogenic replating efficiency in colony formation assays as compared to wildtype mice. Weekly administration of the myeloablative agent 5-fluorouracil (5-FU) led to a significantly shorter life span of Inca1−/ − mice compared to wildtype littermates. The increased 5-FU toxicity might thus be related to a higher number of cycling HSC in Inca1−/ − bone marrow. Analysis of the impact of Inca1 on cell cycle regulation demonstrated that the fraction of Inca1−/ − embryonic fibroblasts (MEFs) in S phase was significantly increased. Ectopic INCA1 expression reduced proliferation and colony formation of proliferating cells such as primary bone marrow cells, HeLa, HuTu80 and 32D cell lines. Serum starvation rapidly induced and mitogenic signals inhibited Inca1 expression providing a further link to cell cycle regulation. To identify the molecular mechanism of cell cycle regulation by Inca1, we investigated the influence of Inca1 on the direct inhibition of CDK2. In spleen lysates from Inca1-deficient mice, cellular CDK2 kinase activity towards Histone H1 was significantly induced compared to lysates of wildtype littermates. In in vitro kinase assays, recombinant INCA1 strongly inhibited CDK2 activity. In addition, we hypothesized that other cyclin kinase inhibitors (CKI) could partially compensate in vivo for the loss of Inca1 function. p21cip1/waf1 mRNA and protein expression were induced in Inca1−/ − MEFs compared to wildtype cells hinting at a partial compensation of the loss of Inca1 by induction of p21. Loss of Inca1 combined with p21 knockdown synergistically increased S-phase. These results indicate that Inca1 could be functionally related to p21 and that the rather mild phenotype observed in Inca1−/ − mice and the modest differences in Cdk activity observed in cell lysates lacking Inca1 could be due to compensatory induction of the CKI p21. In summary, loss of Inca1 increased cell proliferation, replating efficiency, S-phase progression, and Cdk2 activity whereas gain of Inca1 suppressed these cell functions. Inca1 expression was induced during cell cycle arrest. We conclude that Inca1 could be a novel cell cycle suppressor regulating the quiescence of HSCs through the inhibition of Cdk2.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3234-3234
Author(s):  
Evangelia Yannaki ◽  
Nikoleta Psatha ◽  
Maria Demertzi ◽  
Evangelia Athanasiou ◽  
Eleni Sgouramali ◽  
...  

Abstract Abstract 3234 Poster Board III-171 Gene therapy has been recently postulated as a realistic therapeutic potential for thalassemia and the mobilized autologous hematopoietic stem cells (HSCs) may represent the preferable source of stem cells for genetic modification due to the higher yield of HSCs compared to conventional bone marrow (bm) harvest. We have previously shown (manuscript under revision) that G-CSF mobilization in the HBBth-3 thalassemic mouse model is less efficient compared to normal C57Bl6 strain, mainly due to increased trapping of hematopoietic stem (Lin-sca-1+ckit+–LSK) and progenitor cells (CFU-GM) in the enlarged thalassemic spleen. The novel mobilizer, AMD3100 (plerixafor, mozobil), has been shown to reversibly bind to CXCR4 and inhibit the interaction between SDF-1 and CXCR4 within the bm microenvironment, resulting in the egress of CD34+ cells into the circulation of healthy donors and cancer patients. The addition of AMD to G-CSF results in even greater increases in circulating CD34+cells. We explored in the current study whether AMD alone or in combination with G-CSF improves the mobilization efficiency of thalassemic mice. C57 and HBBth-3 mice received G-CSF-alone at 250microgr/kgX7 days, AMD-alone at 5mg/kgX3 days or the combination of two with AMD administered in the evening of days 5-7 of G-CSF administration. Hematopoietic tissues (blood, bm, spleen) were collected and the absolute LSK and CFU-GM numbers were calculated based on their frequency within tissues (by FCM and clonogenic assays) in relation to the individual cell count per tissue. AMD-alone didn't significantly affect the HSC yield as compared to G-CSF mobilization in thal mice (LSK/μl blood: 103±85 vs 69±26 p=ns), although it significantly increased the circulating Colony Forming Cells (CFU-GM/ml blood: 1205±533 vs 330±87, p=0,05). In contrast, the AMD+G-CSF combination significantly improved the mobilization efficiency of HBBth-3 mice over the G-CSF-treated group (LSK cells/μl blood: 224±104 vs 69±26 p=0,04, CFU-GM/ml blood: 1671±984 vs 330±87 p=0,05, respectively) at levels comparable to normal mice treated with G-CSF (LSK cells/ μl blood: 241±167, CFU-GM/ml blood: 1235±1140, respectively). AMD induced a “detachment” of stem cells from the bm because reduced numbers of bm LSK cells were counted in the AMD-alone group as compared to the untreated group (LSK/2 femurs×103: 692±429 vs 1687±1016, respectively, p=0,05). This was in contrast to the marrow hyperplasia caused by G-CSF over the steady-state condition (LSK/2 femurs×103: 2684±1743 vs 1687±1016 p=0,02 / CFU-GM/2femurs:111.841±15.391 vs 76.774±31.728 p=0,01). Consequently, the combination of AMD+G-CSF resulted in increased numbers of circulating stem and progenitor cells without inducing marrow hyperplasia as compared to steady-state condition (LSK/2femurs×103: 1681±862 vs 1686±1017, p=ns / CFU-GM/2femurs: 76.774±31.728 vs 82.905±26.277, p=ns). AMD, also in contrast to G-CSF, did not cause increased trapping of stem and progenitor cells in the spleen compared to the untreated condition (LSK cells/spleen×103: 4738±2970 vs 8303±4166 p=ns / CFU-GM/spleen:146.269±93.174 vs 98.518±25.549, p=ns). However, the combination of AMD+G-CSF still resulted in splenic sequestration of progenitor cells (CFU-GM/spleen: 412.176±157.417 vs 98.518±25.549, p=0,0003) but not of LSK cells (LSK cells/spleen×103: 10.200±7.260 vs 8.300±4.166 p=ns). Overall, the combination of AMD3100+G-CSF seems to restore the less efficient mobilization in a thalassemic mouse model. This combination may prove beneficial in a GT setting for obtaining the high numbers of HSCs needed for genetic correction. In addition, the combination of AMD3100+G-CSF, by avoiding the marrow hyperplasia induced by G-CSF alone, indicates a better safety profile because it will not further burden the hyperplastic –due to the increased erythroid demand and the intramarrow destruction of erythroblasts-thalassemic bone marrow. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1547-1547
Author(s):  
Chandra Sekhar Boddupalli ◽  
Dior Baumjohann ◽  
Tim Sparwasser ◽  
Markus G Manz

Abstract Abstract 1547 Lymphoid tissue dendritic cells (DCs) have a short life-span of a few days and need to be continuously replenished from hematopoietic stem and progenitor cells. Flt3-Ligand (Flt3L) plays non-redundant role in development of DCs (McKenna. H.J. et al., Blood; 2000). Previously we found that Flk2 (fetal liver kinase-2), the cognate receptor for Flt3L is expressed on early dendritic cell progenitors and Flt3L-Flk2 signalling efficiently supports DC development from early progenitors to steady-state DCs in mice and men (Karsunky, H. et al., J Exp Med; 2003; Chicha L. et al. J Exp Med; 2004). Flk2 is also expressed on mature steady-state lymphoid organ DCs; however its function on mature cells remains to be determined. Flt3L is expressed in almost all the tissues in both mice and men (Hannum, C. et al., Nature; 1994) and this cytokine is critical in the maintenance of DC/T regulatory (Treg) cell homeostasis (Darrase-Jéze. G et al., J Exp Med; 2009; Swee LK et al., Blood; 2009; Manz MG, Blood 2009). However, the precise cellular source of Flt3L and the regulation of production in steady-state and immune responses in vivo is not well understood. Genetic ablation of the Flk2 receptor lead to 10-fold elevated Flt3L levels in the serum of mice. To evaluate if hematopoietic or non-hematopoietic cells are the main consumers of Flt3L in vivo, we generated bone marrow chimeras by transplanting wild type (WT) or Flt3L-/- c-Kit+ hematopoietic stem and progenitor cells into lethally irradiated Flk2-/- mice. This demonstrated that hematopietic progenitors and DCs expressing Flk2 receptor are the main consumers of Flt3L in vivo. Previously we showed that in vivo Flk2 tyrosine kinase inhibition and consecutive DC reduction lead to 10fold elevated levels of serum Flt3L (Tussiwand. R. et al., J Immunol; 2005). By using CD11c DTR mice (Zaft, T. et al., J Immunol; 2005) in which diphtheria toxin (DT) receptor is cloned under the CD11c promoter and treatment of mice with DT lead to selective depletion of DCs we here show that ablation Flk2 expressing DCs lead to immediate, about 4-fold elevated serum Flt3L levels in mice. However, we observed no change in mRNA expression of Flt3L, which strongly indicates that Flk2 expressed on DCs is acting as “scavenger” for Flt3L. We then studied sources of Flt3L in vivo. To this end we generated bone marrow chimeras by transplanting WT c-Kit+ hematopoietic stem and progenitor cells in to lethally irradiated Flt3L-/- hosts and vice versa (WT to Fllt3L-/-, Flt3L-/- to WT), and found that in vivo DC homeostasis can be achieved by non-hematopoietic and to lesser extend by hematopoietic cell produced Flt3L. Furhtermore, we found that compared to other hematopoietic cells Flt3L mRNA is highly expressed in lymphocytes (T and B cells) and in lymphoid tissues like thymus, spleen and lymph nodes. We thus used bone marrow c-Kit+ hematopoietic stem and progenitor cells from mice that lack T and B cells (Rag1-/-) or that lack T cells (CD3ε-/-) as donors to transplant lethally conditioned Flt3L-/- mice, and found that Flt3L produced by T and B cells is necessary to support DC development in non hematopoietic Flt3L deficient mice. Using BrdU incorporation we evaluated the functional relevance of Flt3L produced by T cells in an ongoing immune response. Experiments revealed that in lymph nodes with proliferating T cells producing Flt3L a higher percent of BrdU+ DCs, i.e. DCs derived from proliferating progenitors were detected. This indicates that Flt3L produced by T cells in an ongoing immune response helps in faster regeneration of DCs from DC committed progenitors. Earlier it has been shown that Treg ablation in Foxp3-DTR mice lead to expansion of DCs in lymph nodes and spleen through Flk2 mediated pathway (Liu, K. et al., Science; 2009); however, the source of Flt3L remained unknown. Here we provide evidence that Treg ablation leads to activation and proliferation of CD4+ T cells that in turn release Flt3L to enhance DC development. These key observations provide insight into the regulation of DC homeostasis and function via tailored adaptation of the Flt3L cytokine milieu by non-hematopoietic and T cells during steady state and during adaptive immune responses. Supported by the Swiss National Science Foundation (310000-116637) and the European Commission FP6 Network of Excellence initiative (LSHB-CT-2004-512074 DC-THERA) Disclosures: No relevant conflicts of interest to declare.


Cell Cycle ◽  
2004 ◽  
Vol 3 (3) ◽  
pp. 312-316 ◽  
Author(s):  
Sachiko Ezoe ◽  
Itaru Matsumura ◽  
Yusuke Satoh ◽  
Hirokazu Tanaka ◽  
Yuzuru Kanakura

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2648-2648 ◽  
Author(s):  
Darja Karpova ◽  
Julie Ritchey ◽  
Matthew Holt ◽  
Darlene Monlish ◽  
Laura G. Schuettpelz ◽  
...  

Abstract During the past two decades peripheral blood stem cells have become the favored graft source for HSCT with 80 % of allogeneic and almost 100 % of autologous HSCT performed with mobilized blood. The critical role of the interaction between the chemokine receptor CXCR4 and its chief ligand CXCL12 for retention and migration of hematopoietic stem and progenitor cells (HSPC) has been well established. Interference with CXCR4/CXCL12 signalling iscurrentlybeing exploited as a strategy to mobilize HSPC indirectly with the most clinically relevant mobilizing agent to date, G-CSF as well as directly with the bicyclam CXCR4 antagonist Plerixafor (AMD3100).In this study, qualitative and quantitative effects of long-term pharmacologic inhibition of CXCR4/CXCL12 axis within the HSPC compartment were investigated in healthy C57BL/6 mice using the non-peptidic small molecule CXCR4 antagonists Plerixafor and ALT1188 along with the Protein-EpitopeMimeticsInhibitor POL5551. Up to 12-14 fold higher mobilization efficiency was achieved by applying the antagonists via two weeks of continuous infusion (up to 8-10x104 CFU-C and LSK/ml) as compared to bolus treatment (4-6x103 CFU-C and LSK/ml) or 5-day course of G-CSF (3-6x103 CFU-C/ml).Despite dramatic increase in numbers of circulating HSPC, the BM HSPC pool dis not decrease; in fact it expanded up to 2-4-fold compared to steady state reservoir (sham-operated control mice) as measured by immunophenotypical (LSK SLAM) and functional (e.g. serial competitive transplantation) properties of the cells. Thus, in contrast to genetically CXCR4 ablatedHSPC, the reversible long-term blockade of the receptor did not diminish the long-term repopulating capacity of HSPC. Cell cycle analysis showed a 2-3-fold increase in cycling activity of BM HSPC: only 10-20% of LSK and 30-40 % of LSK SLAM cells were found to be quiescent (in G0 phase of the cell cycle) after two weeks of CXCR4 antagonist infusion versus 50-60 % of LSK and 70 % of LSK SLAM found in G0 under homeostatic conditions. This increased proliferation was very similar to the one induced transiently at day 3 G-CSF treatmentand would conceivably explain the sustained mobilization without concomitant depletion of the BM HSPC pool. Profiling of differentially treated BM HSC (LSK SLAM) via microarray analysis did not reveal substantial effects of CXCR4 inhibitor infusion on the expression signature. Ofnote, major cytological changes typically associated with G-CSF induced mobilization, e.g. depletion of bone lining osteoblast lineage cells and macrophages, were not detected in continuous infusion of POL5551 exposed BM suggesting limitedeffects within the BM niche compartment. Moreover analysis of the BM HSPC after different washout periods at the end of continuous infusion treatment revealed a rapid (within 1-3 days after discontinuation of infusion) reestablishment of steady state HSPC numbers in the BM.Our data suggest that prolonged pharmacologic blockade of the CXCR4/CXCL12 axis using multiple small molecule inhibitorsrepresents an approach thatreleasesHSPCwith efficiency superiorto any other knownmobilization strategybut also may serve as an effective method induce cell cycling and thus expand BM HSPCs. Figure Competitive transplantation of POL5551 treated andcontrol BM (n=5 recipients per group, mean±SEM) Figure. Competitive transplantation of POL5551 treated andcontrol BM (n=5 recipients per group, mean±SEM) Disclosures Levesque: GlycoMimetics: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document