Zwitterionic Metal-Enolate or Equivalent: Generation and Capture

Synlett ◽  
2022 ◽  
Author(s):  
Linhong Zuo ◽  
Wusheng Guo

Functionalized ketones and their derivatives are very important building blocks in organic synthesis and material chemistry. The development of novel methodology for the chemo-, regio-, diastereo-, stereo- and enantioselective synthesis of functionalized ketones and their derivatives is the continuous endeavor of organic chemists. Herein we highlight the new approach that was recently initiated and developed by our group for the synthesis of (enantioenriched) ketones and related derivatives based on zwitterionic metal-enolate (ZME) chemistry.

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7475
Author(s):  
Yipeng You ◽  
Ming Yu Jin ◽  
Guanyu Tao ◽  
Xiangyou Xing

No matter through asymmetric reduction of ketones or kinetic resolution of secondary alcohols, enantioselective synthesis of the corresponding secondary alcohols is challenging when the two groups attached to the prochiral or chiral centers are spatially or electronically similar. For examples, dialkyl (sp3 vs. sp3), diaryl (sp2 vs. sp2), and aryl-alkenyl (sp2 vs. sp2) alcohols are difficult to produce with high enantioselectivities. By exploiting our recently developed Ru-catalysts of minimal stereogenicity, we reported herein a highly efficient kinetic resolution of aryl-alkenyl alcohols through hydrogen transfer. This method enabled such versatile chiral building blocks for organic synthesis as allylic alcohols, to be readily accessed with excellent enantiomeric excesses at practically useful conversions.


2020 ◽  
Vol 6 (46) ◽  
pp. eabc9923
Author(s):  
Giacomo Filippini ◽  
Francesco Longobardo ◽  
Luke Forster ◽  
Alejandro Criado ◽  
Graziano Di Carmine ◽  
...  

The favorable exploitation of carbon nitride (CN) materials in photocatalysis for organic synthesis requires the appropriate fine-tuning of the CN structure. Here, we present a deep investigation of the structure/activity relationship of CN in the photocatalytic perfluoroalkylation of organic compounds. Four types of CN bearing subtle structural differences were studied via conventional characterization techniques and innovative nuclear magnetic resonance (NMR) experiments, correlating the different structures with the fundamental mechanistic nexus and especially highlighting the importance of the halogen bond strength between the reagent and the catalyst surface. The optimum catalyst exhibited an excellent performance, with a very wide reaction scope, and could prominently trigger the model reaction using natural sunlight. The work lays a platform for establishing a new approach in the development of heterogeneous photocatalysts for organic synthesis related to medical, agricultural, and material chemistry.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2019 ◽  
Author(s):  
De-Wei Gao ◽  
Yang Gao ◽  
Huiling Shao ◽  
Tian-Zhang Qiao ◽  
Xin Wang ◽  
...  

Enantioenriched <i>α</i>-aminoboronic acids play a unique role in medicinal chemistry and have emerged as privileged pharmacophores in proteasome inhibitors. Additionally, they represent synthetically useful chiral building blocks in organic synthesis. Recently, CuH-catalyzed asymmetric alkene hydrofunctionalization has become a powerful tool to construct stereogenic carbon centers. In contrast, applying CuH cascade catalysis to achieve reductive 1,1-difunctionalization of alkynes remains an important, but largely unaddressed, synthetic challenge. Herein, we report an efficient strategy to synthesize <i>α</i>-aminoboronates <i>via </i>CuH-catalyzed hydroboration/hydroamination cascade of readily available alkynes. Notably, this transformation selectively delivers the desired 1,1-heterodifunctionalized product in favor of alternative homodifunctionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized byproducts, thereby offering rapid access to these privileged scaffolds with high chemo-, regio- and enantioselectivity.<br>


2019 ◽  
Author(s):  
Ming Shang ◽  
Karla S. Feu ◽  
Julien C. Vantourout ◽  
Lisa M. Barton ◽  
Heather L. Osswald ◽  
...  

<div> <div> <div> <p>The union of two powerful transformations, directed C–H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series. </p> </div> </div> </div>


2018 ◽  
Vol 15 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Shah Bakhtiar Nasir ◽  
Noorsaadah Abd Rahman ◽  
Chin Fei Chee

Background: The Diels-Alder reaction has been widely utilised in the syntheses of biologically important natural products over the years and continues to greatly impact modern synthetic methodology. Recent discovery of chiral organocatalysts, auxiliaries and ligands in organic synthesis has paved the way for their application in Diels-Alder chemistry with the goal to improve efficiency as well as stereochemistry. Objective: The review focuses on asymmetric syntheses of flavonoid Diels-Alder natural products that utilize chiral ligand-Lewis acid complexes through various illustrative examples. Conclusion: It is clear from the review that a significant amount of research has been done investigating various types of catalysts and chiral ligand-Lewis acid complexes for the enantioselective synthesis of flavonoid Diels-Alder natural products. The results have demonstrated improved yield and enantioselectivity. Much emphasis has been placed on the synthesis but important mechanistic work aimed at understanding the enantioselectivity has also been discussed.


Sign in / Sign up

Export Citation Format

Share Document