1 Minimally Invasive Spinal Instrumentation: Past, Present, and Future

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Guang-Ting Cong ◽  
Avani Vaishnav ◽  
Joseph Barbera ◽  
Hiroshi Kumagai ◽  
James Dowdell ◽  
...  

Abstract INTRODUCTION Posterior spinal instrumentation for fusion using intraoperative computed tomography (CT) navigation is gaining traction as an alternative to the conventional two-dimensional fluoroscopic-guided approach to percutaneous pedicle screw placement. However, few studies to date have directly compared outcomes of these 2 minimally invasive instrumentation methods. METHODS A consecutive cohort of patients undergoing primary percutaneous posterior lumbar spine instrumentation for spine fusion was retrospectively reviewed. Revision surgeries or cases converted to open were excluded. Accuracy of screw placement was assessed using a postoperative CT scan with blinding to the surgical methods used. The Gertzbein-Robbins classification was used to grade cortical breach: Grade 0 (<0 mm cortical breach), Grade I (<2 mm), Grade II (2-4 mm), Grade III (4-6 mm), and Grade IV (>6 mm). RESULTS CT navigation was found to significantly improve accuracy of screw placement (P < .022). There was significantly more facet violation of the unfused level in the fluoroscopy group vs the CT group (9% vs 0.5%; P < .0001). There was also a higher proportion of poor screw placement in the fluoroscopy group (10.1% vs 3.6%). No statistical difference was found in the rate of tip breach, inferomedial breach, or lateral breach. Regression analysis showed that fluoroscopy had twice the odds of incurring poor screw placement as compared to CT navigation. CONCLUSION This radiographic study comparing screw placement in minimally invasive fluoroscopy- vs CT navigation-guided lumbar spine instrumentation provides evidence that CT navigation significantly improves accuracy of screw placement, especially in optimizing the screw trajectory so as to avoid facet violation. Long-term follow-up studies should be performed to ascertain whether this difference can contribute to an improvement in clinical outcomes.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Akshay Hari ◽  
Keshava Reddy ◽  
Deshpande V. Rajakumar

2017 ◽  
Vol 19 (4) ◽  
pp. 472-478 ◽  
Author(s):  
Weiguo Zhu ◽  
Weixiang Sun ◽  
Leilei Xu ◽  
Xu Sun ◽  
Zhen Liu ◽  
...  

OBJECTIVE Recently, minimally invasive scoliosis surgery (MISS) was introduced for the correction of adult scoliosis. Multiple benefits including a good deformity correction rate and fewer complications have been demonstrated. However, few studies have reported on the use of MISS for the management of adolescent idiopathic scoliosis (AIS). The purpose of this study was to investigate the outcome of posterior MISS assisted by O-arm navigation for the correction of Lenke Type 5C AIS. METHODS The authors searched a database for all patients with AIS who had been treated with either MISS or PSF between November 2012 and January 2014. Levels of fusion, density of implants, operation time, and estimated blood loss (EBL) were recorded. Coronal and sagittal parameters were evaluated before surgery, immediately after surgery, and at the last follow-up. The accuracy of pedicle screw placement was assessed according to postoperative axial CT images in both groups. The 22-item Scoliosis Research Society questionnaire (SRS-22) results and complications were collected during follow-up. RESULTS The authors retrospectively reviewed the records of 45 patients with Lenke Type 5C AIS, 15 who underwent posterior MISS under O-arm navigation and 30 who underwent posterior spinal fusion (PSF). The 2 treatment groups were matched in terms of baseline characteristics. Comparison of radiographic parameters revealed no obvious difference between the 2 groups immediately after surgery or at the final follow-up; however, the MISS patients had significantly less EBL (p < 0.001) and longer operation times (p = 0.002). The evaluation of pain and self-image using the SRS-22 showed significantly higher scores in the MISS group (p = 0.013 and 0.046, respectively) than in the PSF group. Postoperative CT showed high accuracy in pedicle placement in both groups. No deep wound infection, pseudarthrosis, additional surgery, implant failure, or neurological complications were recorded in either group. CONCLUSIONS Minimally invasive scoliosis surgery is an effective and safe alternative to open surgery for patients with Lenke Type 5C AIS. Compared with results of the open approach, the outcomes of MISS are promising, with reduced morbidity. Before the routine use of MISS, however, long-term data are needed.


2008 ◽  
Vol 25 (2) ◽  
pp. E17 ◽  
Author(s):  
Michael Y. Wang ◽  
Steven C. Ludwig ◽  
D. Greg Anderson ◽  
Praveen V. Mummaneni

Minimally invasive spinal instrumentation techniques have evolved tremendously over the past decade. Although there have been numerous reports of lumbar instrumentation performed via a percutaneous or minimal incisional route, to date there have been no reports of minimally invasive iliac screw placement. A method was developed for accurate placement of minimally invasive iliac screw placement based on a modification of currently available percutaneous lumbar instrumentation techniques. The method involves fluoroscopically guided insertion of a cannula-based screw system, and this technique was successful applied to treat an L-5 burst fracture with L-4 to iliac spinal stabilization via a minimally invasive approach. This report demonstrates the feasibility of percutaneous iliac screw instrumentation. However, future studies will be needed to validate the safety and efficacy of this approach.


2009 ◽  
Vol 27 (3) ◽  
pp. E9 ◽  
Author(s):  
Jeffrey H. Oppenheimer ◽  
Igor DeCastro ◽  
Dennis E. McDonnell

The trend of using smaller operative corridors is seen in various surgical specialties. Neurosurgery has also recently embraced minimal access spine technique, and it has rapidly evolved over the past 2 decades. There has been a progression from needle access, small incisions with adaptation of the microscope, and automated percutaneous procedures to endoscopically and laparoscopically assisted procedures. More recently, new muscle-sparing technology has come into use with tubular access. This has now been adapted to the percutaneous placement of spinal instrumentation, including intervertebral spacers, rods, pedicle screws, facet screws, nucleus replacement devices, and artificial discs. New technologies involving hybrid procedures for the treatment of complex spine trauma are now on the horizon. Surgical corridors have been developed utilizing the interspinous space for X-STOP placement to treat lumbar stenosis in a minimally invasive fashion. The direct lateral retroperitoneal corridor has allowed for minimally invasive access to the anterior spine. In this report the authors present a chronological, historical perspective of minimal access spine technique and minimally invasive technologies in the lumbar, thoracic, and cervical spine from 1967 through 2009. Due to a low rate of complications, minimal soft tissue trauma, and reduced blood loss, more spine procedures are being performed in this manner. Spine surgery now entails shorter hospital stays and often is carried out on an outpatient basis. With education, training, and further research, more of our traditional open surgical management will be augmented or replaced by these technologies and approaches in the future.


2020 ◽  
Vol 19 (4) ◽  
pp. E422-E422
Author(s):  
Martin H Pham ◽  
Joseph A Osorio ◽  
Ronald A Lehman

Abstract The use of robotic guidance for spinal instrumentation has become promising for its ability to offer the advantages of precision, accuracy, and reproducibility. However, the utilization and adoption of robotic platforms for spine surgery remain limited, especially in comparison to other surgical fields. We present here a case of a 52-yr-old man with a grade 1 L4-5 degenerative spondylolisthesis causing severe claudication and radiculopathy who subsequently underwent a minimally invasive L4-5 transforaminal lumbar interbody fusion with navigated spinal robotic assistance (Mazor X Stealth Edition, Mazor Robotics Ltd, Caesarea, Israel). This platform allows for planning and registration via (1) a preoperative thin-cut computed tomography (CT) scan, or (2) an intraoperative CT “scan-and-plan” method. We show here the preoperative CT method that we use in the majority of our patients. To our knowledge, this is the first video demonstrating the preoperative software and intraoperative surgical registration and instrument workflow of navigated spinal robotic guidance using the Mazor X Stealth Edition for the insertion of pedicle screws in a minimally invasive spine surgery procedure. There is no identifying information in this video. Patient consent was obtained for the surgical procedure and for publishing of the material included in the video.


Author(s):  
Ayman Hussein ◽  
Hamdy Ibrahim ◽  
Hazem Mashaly ◽  
Sameh Hefny ◽  
Abdelrahman El Gayar

Abstract Background Percutaneous pedicle screw technique is relatively a recent technique that evolved the concept of posterior spinal instrumentation, utilizing familiar fluoroscopic landmarks to guide the procedure of screws insertion, which despite being technically demanding, it avoids the Musculo-ligamentous damage associated with the conventional posterior technique. Aim of the work This study aims to report our experience in managing traumatic and degenerative spine pathologies by the minimally invasive percutaneous technique and assessing its radiological and functional outcome. Materials and methods A prospective observational study that included the analysis of the functional, operative, biochemical, and radiological outcomes of 20 patients who underwent uniplanar fluoroscopic-guided dorsal and/or lumbar percutaneous pedicle screw fixation procedures with or without fusion using the sextant, longitude, and Spineart system and any reported complications between January 2018 and December 2019. Results The clinical and radiological analysis of 100 percutaneous pedicle screws in degenerative (n:11) and traumatic (n:9) dorsal and/or lumbar cases revealed that the biomechanical stabilizing characteristics are comparable to the conventional posterior approach with the added benefits of the paraspinal muscle-sparing. Satisfactory functional outcome represented in the improvement of the postoperative back pain visual analog score and Oswestry Disability Index Score with acceptable morbidity and complications rate was noticed. Conclusions Percutanous pedicle screw fixation is a landmark in the evolution of the minimally invasive spine surgery which can be a safe alternative to the conventional posterior muscle stripping technique with a comparable functional and radiological outcome and good biomechanical profile and an acceptable morbidity rate.


2021 ◽  
Vol 34 (1) ◽  
pp. 150-154
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato

OBJECTIVEMost surgeons are forced to turn their heads away from the surgical field to see various intraoperative support monitors. These movements may result in inconvenience to surgeons and lead to technical difficulties and potential errors. Wearable devices that can be attached to smart glasses or any glasses are novel visualization tools providing an alternative screen in front of the user’s eyes, allowing surgeons to keep their attention focused on the operative task without taking their eyes off the surgical field. The aim of the present study was to examine the feasibility of using glasses equipped with a wearable display device that transmits display monitor data during fluoroscopically guided minimally invasive spinal instrumentation surgery.METHODSIn this pilot prospective randomized study, 20 consecutively enrolled patients who underwent single-segment posterior lumbar interbody fusion (PLIF) at L5–S1 performed using the percutaneous pedicle screw technique were randomly divided into two groups, a group for which the surgeon used a wearable display device attached to regular glasses while performing surgery (smart glasses group) and a group for which the surgeon did not use such a device (nonglasses group). Real-time intraoperative fluoroscopic images were wirelessly transmitted to the display device attached to the surgeon’s glasses. The number of head turns performed by the surgeon to view the standard fluoroscopic monitor during procedures and the operative time, estimated blood loss, radiation exposure time, screw placement accuracy, and intraoperative complication rate were evaluated for comparison between the two groups.RESULTSThe number of surgeon head turns to view the fluoroscopic monitor in the smart glasses group was 0.10 ± 0.31 times, which was significantly fewer than the head turns in the nonglasses group (82.4 ± 32.5 times; p < 0.001). The operative and radiation exposure times in the smart glasses group were shorter than those in the nonglasses group (operative time 100.2 ± 10.4 vs 105.5 ± 14.6 minutes, radiation exposure time 38.6 ± 6.6 vs 41.8 ± 16.1 seconds, respectively), although the differences were not significant. Postoperative CT showed one screw perforation in the nonglasses group, and no intraoperative complications were observed in either group.CONCLUSIONSThis is, to the authors’ knowledge, the first report on the feasibility of using this wearable display device attached to glasses for fluoroscopically guided minimally invasive spinal instrumentation surgery. Smart glasses display devices such as this one may be a valid option to facilitate better concentration on operative tasks by improving ergonomic efficiency during surgery.


Sign in / Sign up

Export Citation Format

Share Document