iliac screw
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 70)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
pp. 1-7

The use of multirod constructs in the setting of adult spinal deformity (ASD) began to prevent rod fracture and pseudarthrosis near the site of pedicle subtraction osteotomies (PSOs) and 3-column osteotomies (3COs). However, there has been unclear and inconsistent nomenclature, both clinically and in the literature, for the various techniques of supplemental rod implantation. In this review the authors aim to provide the first succinct lexicon of multirod constructs available for the treatment of ASD, providing a universal nomenclature and definition for each type of supplementary rod. The primary rod of ASD constructs is the longest rod that typically spans from the bottom of the construct to the upper instrumented vertebrae. The secondary rod is shorter than the primary rod, but is connected directly to pedicle screws, albeit fewer of them, and connects to the primary rod via lateral connectors or cross-linkers. Satellite rods are a 4-rod technique in which 2 rods span only the site of a 3CO via pedicle screws at the levels above and below, and are not connected to the primary rod (hence the term “satellite”). Accessory rods are connected to the primary rods via side connectors and buttress the primary rod in areas of high rod strain, such as at a 3CO or the lumbosacral junction. Delta rods span the site of a 3CO, typically a PSO, and are not contoured to the newly restored lordosis of the spine, thus buttressing the primary rod above and below a 3CO. The kickstand rod itself functions as an additional means of restoring coronal balance and is secured to a newly placed iliac screw on the side of truncal shift and connected to the primary rod; distracting against the kickstand then helps to correct the concavity of a coronal curve. The use of multirod constructs has dramatically increased over the last several years in parallel with the increasing prevalence of ASD correction surgery. However, ambiguity persists both clinically and in the literature regarding the nomenclature of each supplemental rod. This nomenclature of supplemental rods should help unify the lexicon of multirod constructs and generalize their usage in a variety of scientific and clinical scenarios.


2021 ◽  
Vol 20 (4) ◽  
pp. 282-286
Author(s):  
Italo Cordeiro de Barros Izaías ◽  
Lucilo S. de A. Maranhão Neto ◽  
André Flávio Freire Pereira ◽  
Marcus André Costa Ferreira ◽  
Rodrigo Castro de Medeiros ◽  
...  

ABSTRACT Objective: To evaluate the morphometry of the pelvis to determine the safe trajectory for the insertion of the S2-iliac screw, and to correlate it with studies reported in the literature for other populations. Method: The computed tomography (CT) pelvic exams of 36 Brazilian patients without congenital malformations, tumors, pelvic ring fractures or dysplasias were selected from the database of a radiological clinic. To define the ideal trajectory of the S2-iliac screw, the following variables were measured: 1- maximum sacroiliac screw length; 2- thickness of the iliac dipole for planning the choice of screw dimensions (length and diameter); 3 - distance between the insertion point of the iliac S2 screw and the posterior sacral cortex; 4 - angulation for insertion of the screw in the mediolateral direction, representing the angle formed between the “iliac line” and the anatomical sagittal plane; 5- Angulation for insertion of the screw in the craniocaudal direction. The Pearson's chi squared and student's t tests were used for statistical analysis. Results: The sample consisted of 36 patients, 50% (18/36) of whom were women. The mean age was 63.7 years, ranging from 23 to 96 years. All the pelvic morphometric variables analyzed presented values similar to those described in the literature for other populations. Conclusion: Prior evaluation of the tomography exams was important for preoperative planning, and there was a statistically significant difference between the sexes only in relation to the variables left craniocaudal and length of the left internal table. Level of evidence III; Observational cross-sectional study.


Spine ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Tomohiro Banno ◽  
Tomohiko Hasegawa ◽  
Yu Yamato ◽  
Go Yoshida ◽  
Hideyuki Arima ◽  
...  

2021 ◽  
Author(s):  
Yangyang Sun ◽  
Ying Fu ◽  
Fanxiao Liu ◽  
Huanzhi Ma ◽  
Wen Zhang ◽  
...  

Abstract Background: In lumbo-iliac fixation, the iliac screw can be placed in a number of locations and directions, and multiple screws can be placed to enhance the fixation effect. At present, there is no uniform standard for the placement of single iliac screw. Biomechanical tests and finite element analyses were used to compare the effect of bilateral single iliac screw with three channels on pelvic stability in lumbo-iliac fixation, so as to provide a basis for determining the best single iliac screw channel.Methods: Five adult embalmed cadaver pelvic specimens were selected. Unstable Tile C1 pelvic injury model (pubic symphysis separation and left sacral Denis II fracture) was established. The pubic symphysis was fixed with five-hole reconstruction plate. Lumbo-iliac fixation for the treatment of pelvic posterior ring injury: three channels of bilateral single iliac screw (channel A from PSIS to AIIS, channel B from 1 cm medial and 1 cm caudal of PSIS to AIIS, channel C from 2 cm below PSIS to AIIS). At the same time, the finite element model of unstable pelvic posterior ring injury treated with lumbo-iliac fixation was established, which were used to analyze and explore the effect of bilateral single iliac screw with three channels on the biomechanical stability of the pelvis, including the stress distribution and the maximum Von Mises stress of internal fixation, vertebral body and ilium.Results: Biomechanical tests revealed that under vertical compression load, the compressive stiffness of pelvic specimens fixed with three channels of bilateral single iliac screw was lower than that of complete pelvic specimens (P < 0.05). The vertical displacement fixed by channel B was smaller than that fixed by channel A and channel C; however, there was no significant difference between channel B and channel A (P > 0.05). The compressive stiffness fixed by channel B was better than that fixed by channel A and channel C. Under torsional load, the torsional stiffness fixed by channel B was stronger than that fixed by channel A and channel C. Finite element analyses conformed that the maximum Von Mises stress of the internal fixator fixed in channel B under the conditions of vertical, forward bending, backward extension, left bending, left rotating and right bending were significantly lower than that fixed in channel A and channel C. Under various working conditions, the maximum Von Mises stress of the internal fixture of channel B was less than that of channel A. In terms of the maximum Von Mises stress of the vertebral body and iliac, compared with the other two iliac screw channels, the overall stress distribution fixed by channel B was more reasonable.Conclusions: Bilateral single iliac screw with three channels in lumbo-iliac fixation could effectively restore pelvic stability. The construct stiffness of the channel from 1cm medial and 1cm caudal of PSIS to AIIS is better than that of the other two channels. This channel has the advantages of good biomechanical stability, reasonable stress distribution, small maximum Von Mises stress of internal fixation, strong fatigue resistance and not easy to break screws and robs.


2021 ◽  
pp. 1-7
Author(s):  
Norimasa Ikeda ◽  
Shunsuke Fujibayashi ◽  
Bungo Otsuki ◽  
Kazutaka Masamoto ◽  
Takayoshi Shimizu ◽  
...  

OBJECTIVE The goal of this study was to investigate clinical outcomes and risk factors for the progression of sacroiliac joint (SIJ) degeneration and bone formation after S2 alar-iliac screw (S2AIS) insertion. METHODS Using preoperative and follow-up CT scan findings (median follow-up 26 months, range 16–43 months), the authors retrospectively studied 100 SIJs in 50 patients who underwent S2AIS placement. The authors measured the progression of SIJ degeneration and bone formation after S2AIS insertion, postoperative new-onset SIJ pain, S2AIS-related reoperation, and instrumentation failures. Stepwise multivariate logistic regression modeling was performed to clarify the risk factors associated with the progression of SIJ degeneration. RESULTS Significant progression of SIJ degeneration was observed in 10% of the group with preoperative SIJ degeneration (p = 0.01). Bone formation was observed in 6.9% of joints. None of the patients with these radiographic changes had new-onset SIJ pain or underwent reoperation related to instrumentation failures. Multivariate logistic regression analysis revealed that preoperative SIJ degeneration (p < 0.01) and a young age at surgery (p = 0.03) significantly affected the progression of SIJ degeneration. CONCLUSIONS The progression of SIJ degeneration and bone formation neither led to major screw-related complications nor affected the postoperative clinical course during the median follow-up period of 26 months. Although S2AIS insertion is a safe procedure for most patients, the results of this study suggested that preoperative degeneration and younger age at surgery affected SIJ degeneration after S2AIS insertion. Further long-term observation may reveal other effects of S2AIS insertion on SIJ degeneration.


Neurospine ◽  
2021 ◽  
Vol 18 (3) ◽  
pp. 554-561
Author(s):  
Ho Yong Choi ◽  
Dae Jean Jo

Objective: To compare the outcomes of S1 foraminal hooks and iliac screws regarding fusion rate at the lumbosacral junction and protective effects on S1 screws.Methods: From January 2017 to December 2019, consecutive patients who underwent long fusions (uppermost instrumented vertebra at or above L1) to the sacrum for adult spinal deformity were enrolled. Patients were divided into S1 foraminal hook group and iliac screw group. Radiographic parameters and the incidence of pseudarthrosis and instrument failure at the lumbosacral junction were compared between the groups.Results: Twenty-nine patients (male:female = 1:28) with a mean age of 73.6 ± 6.8 years were evaluated. Sixteen patients (55.2%) had S1 foraminal hook fixation and 13 patients (44.8%) had iliac screw fixation. Lumbar lordosis, sacral slope, and sagittal vertical axis did not differ between the groups preoperatively and postoperatively. The rate of L5/S1 pseudarthrosis was significantly higher in S1 foraminal hook group (5 of 16, 31.3%), compared to iliac screw group (0 of 13, 0%; p = 0.048). Instrument failure at the lumbosacral junction trended toward a higher rate in S1 foraminal hook group (6 of 16, 37.5%) than in iliac screw group (1 of 13, 7.7%), without statistical significance (p = 0.09). Proximal junctional kyphosis/failure occurred less often in S1 foraminal hook group (2 of 16, 12.5%) than in iliac screw group (3 of 13, 30.8%) without statistical significance (p = 0.36).Conclusion: Treatment with S1 foraminal hooks achieved equivalent satisfactory sagittal correction with proportioned alignment compared to that with iliac screws. However, S1 foraminal hooks did not provide enough structural support to the lumbosacral junction in long fusions to the sacrum.


Author(s):  
Matteo Panico ◽  
Ruchi D. Chande ◽  
Derek P. Lindsey ◽  
Ali Mesiwala ◽  
Tomaso Maria Tobia Villa ◽  
...  

Abstract Purpose Sacropelvic fixation is frequently used in combination with thoracolumbar instrumentation for the correction of severe spinal deformities. The purpose of this study was to explore the effects of the triangular titanium implants on the iliac screw fixation. Our hypothesis was that the use of triangular titanium implants can increase the stability of the iliac screw fixation. Methods Three T10-pelvis instrumented models were created: pedicle screws and rods in T10-S1, and bilateral iliac screws (IL); posterior fixation and bilateral iliac screws and triangular implants inserted bilaterally in a sacro-alar-iliac trajectory (IL-Tri-SAI); posterior fixation and bilateral iliac screws and two bilateral triangular titanium implants inserted in a lateral trajectory (IL-Tri-Lat). Outputs of these models, such as hardware stresses, were compared against a model with pedicle screws and rods in T10-S1 (PED). Results Sacropelvic fixation decreased the L5-S1 motion by 75–90%. The motion of the SIJ was reduced by 55–80% after iliac fixation; the addition of triangular titanium implants further reduced it. IL, IL-Tri-SAI and IL-Tri-Lat demonstrated lower S1 pedicle stresses with respect to PED. Triangular implants had a protective effect on the iliac screw stresses. Conclusion Sacropelvic fixation decreased L5-S1 range of motion suggesting increased stability of the joint. The combination of triangular titanium implants and iliac screws reduced the residual flexibility of the sacroiliac joint, and resulted in a protective effect on the S1 pedicle screws and iliac screws themselves. Clinical studies may be performed to demonstrate applicability of these FEA results to patient outcomes.


Sign in / Sign up

Export Citation Format

Share Document