scholarly journals The Use of Detachable Flanges on Customized Titanium Orbital Implants: A Technical Note

2011 ◽  
Vol 4 (4) ◽  
pp. 201-202 ◽  
Author(s):  
Shakir F. Mustafa ◽  
A. Bocca ◽  
Adrian W. Sugar ◽  
Steven J. Key

The combined use of three-dimensional reformatted images, stereolithographic models, and rapid prototyping allows the construction of an accurate, individually made titanium implant for the reconstruction of orbital floor defects. Despite the perfect fit of the custom-made plate to the model, there might be several locations on the bone where the plate may reside intraoperatively. Most titanium orbital plates therefore contain extensions over the inferior orbital rim to help locate and stabilize the plate in its position on the bone. Such over-the-rim extensions may be palpable and can cause discomfort postoperatively. We describe the use of two small detachable flanges that help to accurately locate the orbital plate in place and allow its fixation. The locating flanges are then detached and discarded, leaving a smooth implant surface within the confines of the bony orbit.

2014 ◽  
Vol 27 (01) ◽  
pp. 85-89 ◽  
Author(s):  
T. Nicetto ◽  
M. Petazzoni

SummaryThis report describes the treatment of traumatic carpal hyperextension in a giant breed dog by pancarpal arthrodesis using a custom- made Fixin locking plate, created with the aid of a three-dimensional plastic model of the bones of the antebrachium produced by rapid prototyping technology.A three-year-old 104 kg male Mastiff dog was admitted for treatment of carpal hyperextension injury. After diagnosis of carpal instability, surgery was recommended. Computed tomography images were used to create a life-size three-dimensional plastic model of the forelimb. The model was used as the basis for constructing a customized 12-hole Fixin locking plate. The plate was used to attain successful pancarpal arthrodesis in the animal.Radiographic examination after 74 and 140 days revealed signs of osseous union of the arthrodesis. Further clinical and radiographic follow-up examination three years later did not reveal any changes in implant position or complications.


2017 ◽  
Vol 87 (5) ◽  
pp. 782-787 ◽  
Author(s):  
Christian Andreas Dietrich ◽  
Andreas Ender ◽  
Stefan Baumgartner ◽  
Albert Mehl

ABSTRACT Objective: To determine the accuracy (trueness and precision) of two different rapid prototyping (RP) techniques for the physical reproduction of three-dimensional (3D) digital orthodontic study casts, a comparative assessment using two 3D STL files of two different maxillary dentitions (two cases) as a reference was accomplished. Materials and Methods: Five RP replicas per case were fabricated using both stereolithography (SLA) and the PolyJet system. The 20 reproduced casts were digitized with a highly accurate reference scanner, and surface superimpositions were performed. Precision was measured by superimposing the digitized replicas within each case with themselves. Superimposing the digitized replicas with the corresponding STL reference files assessed trueness. Statistical significance between the two tested RP procedures was evaluated with independent-sample t-tests (P < .05). Results: The SLA and PolyJet replicas showed statistically significant differences for trueness and precision. The precision of both tested RP systems was high, with mean deviations in stereolithographic models of 23 (±6) μm and in PolyJet replicas of 46 (±13) μm. The mean deviation for trueness in stereolithographic replicas was 109 (±4) μm, while in PolyJet replicas, it was 66 (±14) μm. Conclusions: Comparing the STL reference files, the PolyJet replicas showed higher trueness than the SLA models. But the precision measurements favored the SLA technique. The dimensional errors observed in this study were a maximum of 127 μm. In the present study, both types of reproduced digital orthodontic models are suitable for diagnostics and treatment planning.


2018 ◽  
Vol 19 (2) ◽  
pp. 135-138 ◽  
Author(s):  
Jae Yoon Kim ◽  
Bok Ki Jung ◽  
Young Suk Kim ◽  
Tai Suk Roh ◽  
In Sik Yun

2009 ◽  
Vol 42 (01) ◽  
pp. 085-093
Author(s):  
Suresh M. Chaware ◽  
Vaibhav Bagaria ◽  
Abhay Kuthe

ABSTRACTAnthropometric variations in humans make it difficult to replace a temporomandibular joint (TMJ), successfully using a standard “one-size-fits-all” prosthesis. The case report presents a unique concept of total TMJ replacement with customized and modified TMJ prosthesis, which is cost-effective and provides the best fit for the patient. The process involved in designing and modifications over the existing prosthesis are also described. A 12-year- old female who presented for treatment of left unilateral TMJ ankylosis underwent the surgery for total TMJ replacement. A three-dimensional computed tomography (CT) scan suggested features of bony ankylosis of left TMJ. CT images were converted to a sterolithographic model using CAD software and a rapid prototyping machine. A process of rapid manufacturing was then used to manufacture the customized prosthesis. Postoperative recovery was uneventful, with an improvement in mouth opening of 3.5 cm and painless jaw movements. Three years postsurgery, the patient is pain-free, has a mouth opening of about 4.0 cm and enjoys a normal diet. The postoperative radiographs concur with the excellent clinical results. The use of CAD/CAM technique to design the custom-made prosthesis, using orthopaedically proven structural materials, significantly improves the predictability and success rates of TMJ replacement surgery.


2015 ◽  
Vol 16 (1) ◽  
pp. 11 ◽  
Author(s):  
Hyung Rok Cho ◽  
Tae Suk Roh ◽  
Kyu Won Shim ◽  
Yong Oock Kim ◽  
Dae Hyun Lew ◽  
...  

Neurosurgery ◽  
2002 ◽  
Vol 50 (4) ◽  
pp. 903-911 ◽  
Author(s):  
Toshifumi Kamiryo ◽  
Joshua Cappell ◽  
Eugene Kronberg ◽  
Henry H. Woo ◽  
Jafar J. Jafar ◽  
...  

Abstract OBJECTIVE: To minimize the risks associated with treating cortical cerebral arteriovenous malformations (AVMs), we developed a technique combining functional imaging and cerebral angiography. The functional loci obtained by performing magnetoencephalography (MEG) are projected onto stereoscopic pairs of a stereotactically derived digital subtraction angiogram. The result is a simultaneous three-dimensional perspective of the angioarchitecture of an AVM and its relationship to the sensorimotor cortex. METHODS: Eight patients underwent multimodality brain imaging, including magnetic resonance imaging, functional mapping via MEG, and stereotactic angiography using a modified Compass fiducial system (Compass International, Rochester, MN). The coordinates derived by performing MEG were superimposed onto stereotactic, stereoscopic, angiographic pairs using custom-made distortion correction and coordinate transfer software. RESULTS: The magnetoencephalographic angiogram allowed simultaneous viewing of the angioarchitecture of the AVM nidus, the feeding vessels, and the draining veins and their relationship to the normal cerebral vasculature and functional cortex. This imaging technique was particularly valuable in identifying en passant vessels that supplied functional cortex and was used during the treatment of these lesions. CONCLUSION: The techniques of MEG and cerebral angiography were combined to provide simultaneous viewing of both modalities in a three-dimensional perspective. This technique can aid in risk stratification in the management of patients with cerebral AVMs. In addition, this technique can facilitate the selective targeting of vessels, thus potentially reducing the risks associated with embolization of these formidable lesions.


2020 ◽  
Vol 32 (2) ◽  
pp. 229-234
Author(s):  
Benjamin Kolb ◽  
John Large ◽  
Stuart Watson ◽  
Glyn Smurthwaite

The authors present a technical note for a prone positioning system developed to facilitate cervical extension osteotomy for ankylosing spondylitis in the presence of severe deformity and frailty. Chin-on-chest deformity represents one of the most debilitating changes of ankylosing spondylitis. Where the chin-brow angle approaches or exceeds 90°, prone positioning becomes problematic due to the fixed position of the head. Furthermore, the challenge is compounded where physiological deconditioning leads to frailty, and the side effects of medical therapies decrease muscle mass and skin quality. Conventional prone positioning equipment is not able to cater to all patients. A versatile system was developed using a 3D reconstruction to enable a positioning simulation and verification tool. The tool was used to comprehensively plan the perioperative episode, including spatial orientation and associated equipment. Three-dimensional printing was used to manufacture a bespoke positioning device that precisely matched the contours of the patient, reducing contact pressure and risk of skin injury. The authors were able to safely facilitate surgery for a patient whose deformity and frailty may otherwise have precluded this possibility. The system has potential safety and economic implications that may be of significant utility to other institutions engaging in complex spinal surgery.


Author(s):  
T. R. Davydova ◽  
А. I. Shaikhaliev ◽  
D. A. Usatov ◽  
G. A. Gasanov ◽  
R. S. Korgoloev

The aim of this study was to study the effect of surface branching of titanium endoprostheses on the efficiency of fibrointegration. The object of the study was samples of titanium alloy Ti6Al4V in the form of disks with a diameter of 5 mm and a thickness of 1 mm with various surface treatments: 1) samples with a rough surface after sandblasting; 2) samples with a rough surface after sandblasting with a bioactive coating of titanium dioxide TiO2 with anatase structure. The study of surface roughness was carried out by profilometry. Evaluation of the spreading and proliferation of cells on the surface of test samples, as well as evaluation of the effectiveness of fibrointegration was carried out according to standard methods using scanning electron microscopy. During the experiments, mesinchymal stem cells were sown on test samples and the test samples were introduced into the soft tissues of experimental animals. Based on the results obtained, it was concluded that the technology of forming rough surfaces by sandblasting does not provide high uniformity and reproducibility in the nanometer range and, apparently, another method for obtaining a rough surface should be chosen. The application of a bioactive coating of titanium dioxide TiO2 with the anatase structure to the surface of titanium endoprostheses increases the efficiency of fibrointegration, however, primarily the fibrointegration of titanium endoprostheses depends on their surface roughness, which determines the concentration of cell structures, the intensity of their adhesion and the ability to fibrointegrative process.


2017 ◽  
Vol 68 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Daniel Besnea ◽  
Alina Spanu ◽  
Iuliana Marlena Prodea ◽  
Gheorghita Tomescu ◽  
Iolanda Constanta Panait

The paper points out the advantages of rapid prototyping for improving the performances/constructive optimization of mixing devices used in process industries, here exemplified to propeller types ones. The multidisciplinary optimization of the propeller profile affords its design using parametric CAD methods. Starting from the mathematical curve equations proposed for the blade profile, it was determined its three-dimensional virtual model. The challenge has been focused on the variation of propeller pitch and external diameter. Three dimensional ranges were manufactured using the additive manufacturing process with Marker Boot 3D printer. The mixing performances were tested on the mixing equipment measuring the minimum rotational speed and the correspondent shaft torque for complete suspension achieved for each of the three models. The virtual and rapid prototyping method is newly proposed by the authors to obtain the basic data for scale up of the mixing systems, in the case of flexible production (of low quantities), in which both the nature and concentration of the constituents in the final product varies often. It is an efficient and low cost method for the rapid identification of the optimal mixing device configuration, which contributes to the costs reduction and to the growing of the output.


Sign in / Sign up

Export Citation Format

Share Document