The Evolution of Pediatric Hodgkin Lymphoma Therapy: Contemporary Protocols Significantly Reduce Radiation Exposure of Normal Tissues

2014 ◽  
Vol 226 (02) ◽  
Author(s):  
R Zhou ◽  
A Ng ◽  
R Weathers ◽  
A McDonald ◽  
W Leisenring ◽  
...  
2010 ◽  
Vol 49 (S 01) ◽  
pp. S53-S58 ◽  
Author(s):  
W. Dörr

SummaryThe curative effectivity of external or internal radiotherapy necessitates exposure of normal tissues with significant radiation doses, and hence must be associated with an accepted rate of side effects. These complications can not a priori be considered as an indication of a too aggressive therapy. Based on the time of first diagnosis, early (acute) and late (chronic) radiation sequelae in normal tissues can be distinguished. Early reactions per definition occur within 90 days after onset of the radiation exposure. They are based on impairment of cell production in turnover tissues, which in face of ongoing cell loss results in hypoplasia and eventually a complete loss of functional cells. The latent time is largely independent of dose and is defined by tissue biology (turnover time). Usually, complete healing of early reactions is observed. Late radiation effects can occur after symptom-free latent times of months to many years, with an inverse dependence of latency on dose. Late normal tissue changes are progressive and usually irreversible. They are based on a complex interaction of damage to various cell populations (organ parenchyma, connective tissue, capillaries), with a contribution from macrophages. Late effects are sensitive for a reduction in dose rate (recovery effects).A number of biologically based strategies for protection of normal tissues or for amelioration of radiation effects was and still is tested in experimental systems, yet, only a small fraction of these approaches has so far been introduced into clinical studies. One advantage of most of the methods is that they may be effective even if the treatment starts way after the end of radiation exposure. For a clinical exploitation, hence, the availability of early indicators for the progression of subclinical damage in the individual patient would be desirable. Moreover, there is need to further investigate the molecular pathogenesis of normal tissue effects in more detail, in order to optimise biology based preventive strategies, as well as to identify the precise mechanisms of already tested approaches (e. g. stem cells).


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 971
Author(s):  
Cecilia Marini ◽  
Matteo Bauckneht ◽  
Anna Borra ◽  
Rita Lai ◽  
Maria Isabella Donegani ◽  
...  

Genome sharing between cancer and normal tissues might imply a similar susceptibility to chemotherapy toxicity. The present study aimed to investigate whether curative potential of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) is predicted by the metabolic response of normal tissues in patients with Hodgkin lymphoma (HL). METHODS: According to current guidelines, 86 patients with advanced-stage (IIB-IVB) HL, prospectively enrolled in the HD0607 trial (NCT00795613), underwent 18 F-fluorodeoyglucose PET/CT imaging at diagnosis and, at interim, after two ABVD courses, to decide regimen maintenance or its escalation. In both scans, myocardial FDG uptake was binarized according to its median value. Death and disease relapse were recorded to estimate progression-free survival (PFS) during a follow-up with median duration of 43.8 months (range 6.97–60). RESULTS: Four patients (4.6%) died, while six experienced disease relapse (7%). Complete switch-off of cancer lesions and cardiac lighting predicted a favorable outcome at Kaplan–Mayer analyses. The independent nature and additive predictive value of their risk prediction were confirmed by the multivariate Cox regression analysis. CONCLUSION: Susceptibility of HL lesions to chemotherapy is at least partially determined by factors featuring the host who developed it.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy J. Weisman ◽  
Jihyun Kim ◽  
Inki Lee ◽  
Kathleen M. McCarten ◽  
Sandy Kessel ◽  
...  

Abstract Purpose For pediatric lymphoma, quantitative FDG PET/CT imaging features such as metabolic tumor volume (MTV) are important for prognosis and risk stratification strategies. However, feature extraction is difficult and time-consuming in cases of high disease burden. The purpose of this study was to fully automate the measurement of PET imaging features in PET/CT images of pediatric lymphoma. Methods 18F-FDG PET/CT baseline images of 100 pediatric Hodgkin lymphoma patients were retrospectively analyzed. Two nuclear medicine physicians identified and segmented FDG avid disease using PET thresholding methods. Both PET and CT images were used as inputs to a three-dimensional patch-based, multi-resolution pathway convolutional neural network architecture, DeepMedic. The model was trained to replicate physician segmentations using an ensemble of three networks trained with 5-fold cross-validation. The maximum SUV (SUVmax), MTV, total lesion glycolysis (TLG), surface-area-to-volume ratio (SA/MTV), and a measure of disease spread (Dmaxpatient) were extracted from the model output. Pearson’s correlation coefficient and relative percent differences were calculated between automated and physician-extracted features. Results Median Dice similarity coefficient of patient contours between automated and physician contours was 0.86 (IQR 0.78–0.91). Automated SUVmax values matched exactly the physician determined values in 81/100 cases, with Pearson’s correlation coefficient (R) of 0.95. Automated MTV was strongly correlated with physician MTV (R = 0.88), though it was slightly underestimated with a median (IQR) relative difference of − 4.3% (− 10.0–5.7%). Agreement of TLG was excellent (R = 0.94), with median (IQR) relative difference of − 0.4% (− 5.2–7.0%). Median relative percent differences were 6.8% (R = 0.91; IQR 1.6–4.3%) for SA/MTV, and 4.5% (R = 0.51; IQR − 7.5–40.9%) for Dmaxpatient, which was the most difficult feature to quantify automatically. Conclusions An automated method using an ensemble of multi-resolution pathway 3D CNNs was able to quantify PET imaging features of lymphoma on baseline FDG PET/CT images with excellent agreement to reference physician PET segmentation. Automated methods with faster throughput for PET quantitation, such as MTV and TLG, show promise in more accessible clinical and research applications.


2011 ◽  
Vol 30 (7) ◽  
pp. 630-631
Author(s):  
Chinmaya Kumar Pani ◽  
Sarita Mohapatra ◽  
Jyotish Chandra Samantaray ◽  
Sameer Bakhshi

2009 ◽  
Vol 59 (6) ◽  
pp. 437-439 ◽  
Author(s):  
K. K. Karipidis ◽  
G. Benke ◽  
M. R. Sim ◽  
L. Fritschi ◽  
C. Vajdic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document