Liver sinusoidal endothelial cells and Kupffer cells contribute to HCV innate immune response via TLR3

2015 ◽  
Vol 53 (01) ◽  
Author(s):  
X Cheng ◽  
M Boxtermann ◽  
B Höchst ◽  
JH Bockmann ◽  
R Bester ◽  
...  
2005 ◽  
Vol 11 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Niek P. van Til ◽  
David M. Markusic ◽  
Roos van der Rijt ◽  
Cindy Kunne ◽  
Johan K. Hiralall ◽  
...  

2019 ◽  
Vol 106 (5) ◽  
pp. 1161-1176 ◽  
Author(s):  
Bridget Mooney ◽  
Fernando J. Torres‐Velez ◽  
Jennifer Doering ◽  
Dylan J. Ehrbar ◽  
Nicholas J. Mantis

2013 ◽  
Vol 182 (3) ◽  
pp. 742-754 ◽  
Author(s):  
Noelle A. Hutchins ◽  
Chun-Shiang Chung ◽  
Joshua N. Borgerding ◽  
Carol A. Ayala ◽  
Alfred Ayala

Author(s):  
Krisztina Németh ◽  
Zoltán Varga ◽  
Dorina Lenzinger ◽  
Tamás Visnovitz ◽  
Anna Koncz ◽  
...  

AbstractLiver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20–30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with 99mTc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with 99mTc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using 99mTc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Armanda Viana Rodrigues ◽  
Ana Valério-Bolas ◽  
Graça Alexandre-Pires ◽  
Maria Aires-Pereira ◽  
Telmo Nunes ◽  
...  

L. infantum is the aetiological agent of zoonotic visceral leishmaniasis (ZVL), a disease that affects humans and dogs. Leishmania parasites are well adapted to aggressive conditions inside the phagolysosome and can control the immune activation of macrophages (MØs). Although MØs are highly active phagocytic cells with the capacity to destroy pathogens, they additionally comprise the host cells for Leishmania infection, replication, and stable establishment in the mammal host. The present study compares, for the first time, the innate immune response to L. infantum infection of two different macrophage lineages: the blood macrophages and the liver macrophages (Kupffer cells, KC). Our findings showed that L. infantum takes advantage of the natural predisposition of blood-MØs to phagocyte pathogens. However, parasites rapidly subvert the mechanisms of MØs immune activation. On the other hand, KCs, which are primed for immune tolerance, are not extensively activated and can overcome the dormancy induced by the parasite, exhibiting a selection of immune mechanisms, such as extracellular trap formation. Altogether, KCs reveal a different pattern of response in contrast with blood-MØs when confronting L. infantum parasites. In addition, KCs response appears to be more efficient in managing parasite infection, thus contributing to the ability of the liver to naturally restrain Leishmania dissemination.


Sign in / Sign up

Export Citation Format

Share Document