Serie: Innovative IT-Projekte: Asklepios Qualitätsmonitor

2016 ◽  
Vol 21 (10) ◽  
pp. 48-49
Author(s):  
Guntram Doelfs
Keyword(s):  

Bei Asklepios wissen Manager und Chefärzte dank eines Software-Tools immer genau, wie es aktuell um die Qualität in allen Kliniken des Konzerns bestellt ist. Im Interview schildert Projektmanager Stefan Kruse die Vorteile der IT-Lösung.

Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


Author(s):  
D. P. Gangwar ◽  
Anju Pathania

This work presents a robust analysis of digital images to detect the modifications/ morphing/ editing signs by using the image’s exif metadata, thumbnail, camera traces, image markers, Huffman codec and Markers, Compression signatures etc. properties. The details of the whole methodology and findings are described in the present work. The main advantage of the methodology is that the whole analysis has been done by using software/tools which are easily available in open sources.


Controlling ◽  
2002 ◽  
Vol 14 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Yvette Hahne ◽  
Hans Schmitz ◽  
Andreas Vetter
Keyword(s):  

2018 ◽  
Author(s):  
Yi Chen ◽  
Sagar Manglani ◽  
Roberto Merco ◽  
Drew Bolduc

In this paper, we discuss several of major robot/vehicle platforms available and demonstrate the implementation of autonomous techniques on one such platform, the F1/10. Robot Operating System was chosen for its existing collection of software tools, libraries, and simulation environment. We build on the available information for the F1/10 vehicle and illustrate key tools that will help achieve properly functioning hardware. We provide methods to build algorithms and give examples of deploying these algorithms to complete autonomous driving tasks and build 2D maps using SLAM. Finally, we discuss the results of our findings and how they can be improved.


1990 ◽  
Author(s):  
David A. Wheeler ◽  
Dennis W. Fife ◽  
Edgar H. Sibley ◽  
J. B. Michael

2017 ◽  
Vol 13 (3) ◽  
pp. 68-78
Author(s):  
A. A. Pavlov ◽  
I. O. Datyev ◽  
M. G. Shishaev

Simulation is the main way for testing technologies in the field of multi-hop wireless networks (MWN). Creating a simulation model MWN - a time-consuming task associated with the use of specialized software tools, called network simulators. In this paper, the modern experience of modeling MWN and the main problems are formulated. One of the main problem is the comparative analysis' impossibility of the experiments results conducted by various researchers. This is due to the reasons associated with the models used for testing, the planning an imitation experiment and the principal differences in the network simulators. To solve this problem, authors propose a generalized conceptual model of MWN simulation and a specialized software package that automates the execution of experiment series in a heterogeneous modeling environment.


2018 ◽  
Vol 25 (9) ◽  
pp. 822-829 ◽  
Author(s):  
Wei Zhao ◽  
Likun Wang ◽  
Tian-Xiang Zhang ◽  
Ze-Ning Zhao ◽  
Pu-Feng Du

Sign in / Sign up

Export Citation Format

Share Document