scholarly journals A Trimethylsilylamine-Acyl Fluoride Amide Bond Forming Protocol for Weakly Nucleophilic Amines that is Amenable to the Parallel Synthesis of Di(hetero)arylamides

Synthesis ◽  
2016 ◽  
Vol 49 (03) ◽  
pp. 571-578 ◽  
Author(s):  
David Grierson ◽  
Maryam Zamiri
Synthesis ◽  
2019 ◽  
Vol 51 (08) ◽  
pp. 1779-1790
Author(s):  
Ana Koperniku ◽  
Maryam Zamiri ◽  
David Grierson

The S-benzyl thioester and methyl ester derivatives of a representative 4-pyridinone-based carboxylic acid were sufficiently activated to react efficiently in amide coupling reactions with the amide anion generated in situ from the N-trimethylsilyl derivative of different weakly nucleophilic heteroarylamines. In acetonitrile as solvent, the precipitated diheteroarylamide products were isolated in pure form by vacuum filtration. This simple amide bond forming protocol can be readily adapted to the parallel synthesis of compound libraries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunyun Ning ◽  
Shuaishuai Wang ◽  
Muzi Li ◽  
Jie Han ◽  
Chengjian Zhu ◽  
...  

AbstractDevelopment of catalytic amide bond-forming methods is important because they could potentially address the existing limitations of classical methods using superstoichiometric activating reagents. In this paper, we disclose an Umpolung amidation reaction of carboxylic acids with nitroarenes and nitroalkanes enabled by the triplet synergistic catalysis of FeI2, P(V)/P(III) and photoredox catalysis, which avoids the production of byproducts from stoichiometric coupling reagents. A wide range of carboxylic acids, including aliphatic, aromatic and alkenyl acids participate smoothly in such reactions, generating structurally diverse amides in good yields (86 examples, up to 97% yield). This Umpolung amidation strategy opens a method to address challenging regioselectivity issues between nucleophilic functional groups, and complements the functional group compatibility of the classical amidation protocols. The synthetic robustness of the reaction is demonstrated by late-stage modification of complex molecules and gram-scale applications.


2020 ◽  
Vol 24 (7) ◽  
pp. 1341-1349 ◽  
Author(s):  
Marion Erny ◽  
Marika Lundqvist ◽  
Jon H. Rasmussen ◽  
Olivier Ludemann-Hombourger ◽  
Frédéric Bihel ◽  
...  

2018 ◽  
Vol 71 (9) ◽  
pp. 697
Author(s):  
Carlie L. Charron ◽  
Jade M. Cottam Jones ◽  
Craig A. Hutton

The condensation of N-mercaptomethyl amines and thioesters is a potential route to amides, via aminomethyl thioester intermediates, in a native chemical ligation type process followed by self-cleavage of the ‘mercaptomethyl’ auxiliary. This paper describes investigations towards the preparation of aminomethyl thioesters, and subsequent conversion into amides, from a three-component coupling of formaldehyde, a thioacid, and an amine. Our studies suggest that while such intermediates may be formed en route to amides, no advantages are offered over the direct reaction of the amine and thioacid precursors.


2019 ◽  
Author(s):  
Yindi Jiang ◽  
Alessia Stornetta ◽  
Peter W. Villalta ◽  
Matthew R. Wilson ◽  
Paul D. Boudreau ◽  
...  

ABSTRACTCertain commensal and pathogenic bacteria produce colibactin, a small molecule genotoxin that causes interstrand cross-links in host cell DNA. Though colibactin has been found to alkylate DNA, the molecular basis for cross-link formation is unclear. Here, we report that the colibactin biosynthetic enzyme ClbL is an amide bond-forming enzyme that links aminoketone and β-keto thioester substrates in vitro and in vivo. The substrate specificity of ClbL strongly supports a role for this enzyme in terminating the colibactin NRPS-PKS assembly line. This transformation would incorporate two electrophilic cyclopropane warheads into the final natural product scaffold. Overall, this work provides a biosynthetic explanation for colibactin’s DNA crosslinking activity and paves the way for further study of its chemical structure.


Synthesis ◽  
2020 ◽  
Vol 52 (21) ◽  
pp. 3231-3242
Author(s):  
Sylvain Laclef ◽  
Maria Kolympadi Marković ◽  
Dean Marković

The amide functionality is one of the most important and widely used groups in nature and in medicinal and industrial chemistry. Because of its importance and as the actual synthetic methods suffer from major drawbacks, such as the use of a stoichiometric amount of an activating agent, epimerization and low atom economy, the development of new and efficient amide bond forming reactions is needed. A number of greener and more effective strategies have been studied and developed. The transamidation of primary amides is particularly attractive in terms of atom economy and as ammonia is the single byproduct. This review summarizes the advancements in metal-catalyzed and organocatalyzed transamidation methods. Lewis and Brønsted acid transamidation catalysts are reviewed as a separate group. The activation of primary amides by promoter, as well as catalyst- and promoter-free protocols, are also described. The proposed mechanisms and key intermediates of the depicted transamidation reactions are shown.1 Introduction2 Metal-Catalyzed Transamidations3 Organocatalyzed Transamidations4 Lewis and Brønsted Acid Catalysis5 Promoted Transamidation of Primary Amides6 Catalyst- and Promoter-Free Protocols7 Conclusion


Sign in / Sign up

Export Citation Format

Share Document