subsequent conversion
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 49)

H-INDEX

32
(FIVE YEARS 5)

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 980
Author(s):  
Aslan Achoh ◽  
Ilya Petriev ◽  
Stanislav Melnikov

The processing of solutions containing sodium salts of naphthenic acids (sodium naphthenate) is in high demand due to the high value of the latter. Such solutions usually include an excessive amount of alkali and a pH of around 13. Bipolar electrodialysis can convert sodium naphthenates into naphthenic acids; however, until pH 6.5, the naphthenic acids are not released from the solution. The primary process leading to a decrease in pH is the removal of excess alkali that implies that some part of electricity is wasted. In this work, we propose a technique for the surface modification of anion-exchange membranes with sulfonated polyetheretherketone, with the formation of bilayer membranes that are resistant to poisoning by the naphthenate anions. We investigated the electrochemical properties of the obtained membranes and their efficiency in a laboratory electrodialyzer. Modified membranes have better electrical conductivity, a high current efficiency for hydroxyl ions, and a low tendency to poisoning than the commercial membrane MA-41. We propose that the primary current carrier is the hydroxyl ion in both electromembrane systems with the MA-41 and MA-41M membranes. At the same time, for the modified MA-41M membrane, the concentration of hydroxyl ions in the anion-exchanger phase is higher than in the MA-41 membrane, which leads to almost five-fold higher values of the specific permeability coefficient. The MA-41M membranes are resistant to poisoning by naphthenic acids anions during at least six cycles of processing of the sodium naphthenate solution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Masaki Honda ◽  
Masashi Kadohisa ◽  
Daiki Yoshii ◽  
Yoshihiro Komohara ◽  
Taizo Hibi

AbstractRecruitment of bone marrow derived monocytes via bloodstream and their subsequent conversion to CX3CR1+ macrophages in response to intestinal injury is dependent on CCR2, Nr4a1, and the microbiome. This process is critical for proper tissue repair; however, GATA6+ peritoneal cavity macrophages might represent an alternative, more readily available source of mature and functional myeloid cells at the damaged intestinal locations. Here we show, using spinning-disk confocal microscopy, that large F4/80hiGATA6+ peritoneal cavity macrophages promptly accumulate at damaged intestinal sites upon intestinal thermal injury and upon dextran sodium sulfate induced colitis in mice via a direct route from the peritoneal cavity. In contrast to bloodstream derived monocytes/macrophages, cavity macrophages do not depend on CCR2, Nr4a1 or the microbiome for recruitment, but rather on the ATP-release and exposed hyaluronan at the site of injury. They participate in the removal of necrotic cells, revascularization and collagen deposition and thus resolution of tissue damage. In summary, peritoneal cavity macrophages represent a rapid alternative route of intestinal tissue repair to traditional monocyte-derived macrophages.


2021 ◽  
Vol 22 (23) ◽  
pp. 12635
Author(s):  
Petr Mlejnek ◽  
Petr Dolezel ◽  
Eva Kriegova ◽  
Nikola Pastvova

N-acetylcysteine (NAC), often used as an antioxidant-scavenging reactive oxygen species (ROS) in vitro, was recently shown to increase the cytotoxicity of other compounds through ROS-dependent and ROS-independent mechanisms. In this study, NAC itself was found to induce extensive ROS production in human leukemia HL-60 and U937 cells. The cytotoxicity depends on ROS-modulating enzyme expression. In HL-60 cells, NAC activated NOX2 to produce superoxide (O2•−). Its subsequent conversion into H2O2 by superoxide dismutase 1 and 3 (SOD1, SOD3) and production of ClO− from H2O2 by myeloperoxidase (MPO) was necessary for cell death induction. While the addition of extracellular SOD potentiated NAC-induced cell death, extracellular catalase (CAT) prevented cell death in HL-60 cells. The MPO inhibitor partially reduced the number of dying HL-60 cells. In U937 cells, the weak cytotoxicity of NAC is probably caused by lower expression of NOX2, SOD1, SOD3, and by the absence of MOP expression. However, even here, the addition of extracellular SOD induced cell death in U937 cells, and this effect could be reversed by extracellular CAT. NAC-induced cell death exhibited predominantly apoptotic features in both cell lines. Conclusions: NAC itself can induce extensive production of O2•− in HL-60 and U937 cell lines. The fate of the cells then depends on the expression of enzymes that control the formation and conversion of ROS: NOX, SOD, and MPO. The mode of cell death in response to NAC treatment bears apoptotic and apoptotic-like features in both cell lines.


2021 ◽  
Vol 19 (3) ◽  
pp. 195-198
Author(s):  
M.M. Mambetova ◽  
K. Dossumov ◽  
G.E. Ergaziyeva ◽  
M.M. Anissova ◽  
B.B. Baizhomartov

The conversion of ethanol on low-percentage copper-containing catalysts at temperatures of 300 oC and 350 oC was studied. γ-Al2O3, SiO2 and HZSM-5 were studied as the carrier of the active phase. It is shown that the main direction of ethanol conversion on low-percentage copper-containing catalysts is its dehydrogenation and subsequent conversion of the resulting products into 1,1-diethoxyethane. Among the studied catalysts (1 wt.% CuO/Al2O3, 1 wt.% CuO/SiO2 and 1 wt.% CuO/ HZSM-5 the most active in the production of 1,1-diethoxyethane was 1 wt.% CuO/Al2O3, modification of it with cerium oxide led to an increase in its activity in the formation of 1,1-diethoxyethane, at the reaction temperature of 350 oС, the yield of the target product was 27 vol.%. The results showed that the modification of CuO/Al2O3 leads to an increase in the catalytic activity of the sample.


2021 ◽  
Author(s):  
Stephanie J. Zhang ◽  
Daniel Duzdevich ◽  
Christopher E. Carr ◽  
Jack W. Szostak

AbstractNonenzymatic template-directed RNA copying using chemically activated nucleotides is thought to have played a key role in the emergence of genetic information on the early Earth. A longstanding question concerns the number and nature of different environments that might have been necessary to enable all of the steps from nucleotide synthesis to RNA replication. Here we explore three sequential steps from this overall pathway: nucleotide activation, synthesis of imidazolium-bridged dinucleotides, and template-directed primer extension. We find that all three steps can take place in one reaction mixture, under conditions of multiple freeze-thaw cycles. Recent experiments have demonstrated a potentially prebiotic methyl isocyanide-based nucleotide activation chemistry. Unfortunately, the original version of this approach is incompatible with nonenzymatic RNA copying because the high required concentration of the imidazole activating group prevents the accumulation of the essential imidazolium-bridged dinucleotide needed for primer extension. Here we report that ice eutectic phase conditions facilitate not only the methyl isocyanide-based activation of ribonucleotide 5′-monophosphates with stoichiometric 2-aminoimidazole, but also the subsequent conversion of these activated mononucleotides into imidazolium-bridged dinucleotides. Furthermore, this one pot approach is compatible with template-directed primer extension in the same reaction mixture. Our results suggest that the simple and common environmental fluctuation of freeze-thaw cycles could have played an important role in prebiotic nucleotide activation and nonenzymatic RNA copying.Significance StatementThe replication of RNA without the aid of evolved enzymes may have enabled the inheritance of useful molecular functions during the origin of life. Several key steps on the path to RNA replication have been studied in isolation, including chemical nucleotide activation, synthesis of a key reactive intermediate, and nonenzymatic RNA copying. Here we report a prebiotically plausible scenario under which these reactions can happen together under mutually compatible conditions. Thus, this pathway could potentially have operated in nature without the complicating requirement for exchange of materials between distinct environments.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5197 ◽  
Author(s):  
Julie A. Culbert ◽  
Mark P. Krstic ◽  
Markus J. Herderich

Due to the increasing frequency of wildfires in recent years, there is a strong need for developing mitigation strategies to manage the impact of smoke exposure of vines and occurrence of ‘smoke taint’ in wine. One plausible approach would be to prevent or inhibit the uptake of volatile phenols from smoke into grape berries in the vineyard. In this study we describe a model system we developed for evaluating under controlled conditions the effectiveness of a range of surface coatings (including existing horticultural sprays) for reducing/preventing the uptake of volatile phenols and their subsequent conversion to phenolic glycosides. Grapes were coated with the materials to be tested and then exposed to gaseous phenols, via evaporation from an aqueous solution, in a semi-closed glass container. Analysis of volatile phenols and their glycosidic grape metabolites demonstrated that the treatments typically did not provide any significant protection; in fact, some resulted in higher concentrations of these compounds in the grapes. The highest concentrations of volatile phenols and their glycosides were observed after application of oily, hydrophobic materials, suggesting that these materials may enhance the adsorption or transfer of volatile phenols into grape berries. Therefore, it is important to consider the types of sprays that are being applied in the vineyard before and during smoke events to prevent the potential of exacerbating the uptake of smoke compounds by grape berries.


2021 ◽  
Vol 1 (S1) ◽  
pp. s20-s21
Author(s):  
Alexandra Trannel ◽  
Takaaki Kobayashi ◽  
Oluchi Abosi ◽  
Kyle Jenn ◽  
Holly Meacham ◽  
...  

Background: Hospital semiprivate rooms may lead to coronavirus disease 2019 (COVID-19) patient exposures. We investigated the risk of COVID-19 patient-to-patient exposure in semiprivate rooms and the subsequent risk of acquiring COVID-19. Methods: The University of Iowa Hospitals & Clinics is an 811-bed tertiary care center. Overall, 16% of patient days are spent in semiprivate rooms. Most patients do not wear masks while in semiprivate rooms. Active COVID-19 surveillance included admission and every 5 days nasopharyngeal SARS-CoV-2 polymerase chain reaction (PCR) testing. We identified inpatients with COVID-19 who were in semiprivate rooms during their infectious periods during July–December 2020. Testing was repeated 24 hours after the first positive test. Cycle threshold (Ct) values of the two tests (average Ct <30), SARS-CoV-2 serology results, clinical assessment, and COVID-19 history were used to determine patient infectiousness. Roommates were considered exposed if in the same semiprivate room with an infectious patient. Exposed patients were notified, quarantined (private room), and follow-up testing was arranged (median seven days). Conversion was defined as having a negative test followed by a subsequent positive within 14 days after exposure. We calculated the risk of exposure: number of infectious patients in semiprivate rooms/number of semiprivate patient-days (hospitalization days in semiprivate rooms). Results: There were 16,427 semiprivate patient days during July–December 2020. We identified 43 COVID-19 inpatients who roommates during their infectious periods. Most infectious patients (77%) were male; the median age was 67 years; and 22 (51%) were symptomatic. Most were detected during active surveillance: admission testing (51%) and serial testing (28%). There were 57 exposed roommates. The risk of exposure was 3 of 1,000 semiprivate patient days. In total, 16 roommates (28%) did not complete follow-up testing. Of 41 exposed patients with follow-up data, 8 (20%) converted following their exposure. Median time to conversion was 5 days. The risk of exposure and subsequent conversion was 0.7 of 1,000 semiprivate patient days. Median Ct value of the source patient was 20 for those who converted and 23 for those who did not convert. Median exposure time was 45 hours (range, 3–73) for those who converted and 12 hours (range, 1–75) for those who did not convert. Conclusions: The overall risk of exposure in semiprivate rooms was low. The conversion rate was comparable to that reported for household exposures. Lower Ct values and lengthier exposures may be associated with conversion. Active COVID-19 surveillance helps early detection and decreases exposure time.Funding: NoDisclosures: None


Author(s):  
Nils Jonathan Helmuth Averesch

Various microbial systems have been explored for their applicability to in-situ resource utilisation (ISRU) on Mars and suitability to leverage Martian resources and convert them into useful chemical products. Considering only fully bio-based solutions, two approaches can be distinguished, which comes down to the form of carbon that is being utilized: (a) the deployment of specialised species that can directly convert inorganic carbon (atmospheric CO2) into a target compound or (b) a two-step process that relies on independent fixation of carbon and the subsequent conversion of biomass and/or complex substrates into a target compound. Due to the great variety of microbial metabolism, especially in conjunction with chemical support-processes, a definite classification is often difficult. This can be expanded to the forms of nitrogen and energy that are available as input for a biomanufacturing platform. To provide a perspective on microbial cell factories that may be suitable for Space Systems Bioengineering, a high-level comparison of different approaches is conducted, specifically regarding advantages that may help to extend an early human foothold on the red planet.


Sign in / Sign up

Export Citation Format

Share Document