Formation of Bicyclic Cyclopentenone Derivatives by Robinson-Type Annulation of Cyclic β-Oxoesters Containing a 1,4-Diketone Moiety

Synthesis ◽  
2017 ◽  
Vol 49 (17) ◽  
pp. 3874-3884 ◽  
Author(s):  
Irina Geibel ◽  
Christoph Kahrs ◽  
Jens Christoffers

Robinson-type cyclopentannulations of cyclic β-oxoesters possessing a 1,4-diketone moiety are accomplished under four different Brønsted basic reaction conditions. Using pyrrolidine/acetic acid in DMSO, an oxohexahydrocyclopenta[a]indene (42%) and an N-Boc-protected oxohexahydrocyclopenta[c]pyridine derivative (62%) are obtained with retention of the ester moieties. The latter compound defines an interesting new scaffold for medicinal chemistry with three positions allowing further derivatizations. The use of KOtBu in DMSO or NaH in toluene leads to cyclopentene derivatives with either partial ester saponification and decarboxylation or displacement of the ester moiety within the carbon skeleton. With aqueous KOH, the cyclopentannulations are successful in almost all cases, but with the ester moieties cleaved off. The respective bicyclic and tricyclic products are obtained in good to excellent yields. The 1,4-diketone starting materials are prepared by cerium-catalyzed oxidative coupling of β-oxoesters with isopropenyl acetate. Alternatively, a two-step sequence consisting of α-propargylation followed by palladium-catalyzed alkyne hydration is used.

2020 ◽  
Author(s):  
Jian Cao ◽  
Ernest Armenta ◽  
Lisa Boatner ◽  
Heta Desai ◽  
Neil Chan ◽  
...  

Bioorthogonal chemistry is a mainstay of chemoproteomic sample preparation workflows. While numerous transformations are now available, chemoproteomic studies still rely overwhelmingly on copper-catalyzed azide –alkyne cycloaddition (CuAAC) or 'click' chemistry. Here we demonstrate that gel-based activity-based protein profiling (ABPP) and mass-spectrometry-based chemoproteomic profiling can be conducted using Suzuki–Miyaura cross-coupling. We identify reaction conditions that proceed in complex cell lysates and find that Suzuki –Miyaura cross-coupling and CuAAC yield comparable chemoproteomic coverage. Importantly, Suzuki–Miyaura is also compatible with chemoproteomic target deconvolution, as demonstrated using structurally matched probes tailored to react with the cysteine protease caspase-8. Uniquely enabled by the observed orthogonality of palladium-catalyzed cross-coupling and CuAAC, we combine both reactions to achieve dual protein labeling.


2018 ◽  
Vol 15 (7) ◽  
pp. 989-994 ◽  
Author(s):  
Ling Li ◽  
Bo Su ◽  
Yuxiu Liu ◽  
Qingmin Wang

Aim and Objective: During the investigation of sodium nitrite-catalyzed oxidative coupling reaction of aryls, an unprecedented C(sp2)-H and C(sp3)-H coupling of substituted 2-aryl acetonitrile was found. Materials and Methods: The structure of the coupled product was confirmed by 1H and 13C NMR spectroscopy and high-resolution mass spectrometry (HRMS), and comparison of its derivatives with known compounds. The effects of methoxy group in the benzene ring on the reaction were evaluated. Results: The optimized reaction conditions are summarized as follows: CF3SO3H/substrate = 1.5 equiv., NaNO2/substrate = 0.3 equiv., CH3CN as solvent. 2-(4-Methoxyphenyl)acetonitrile and 2-(3,4,5- trimethoxyphenyl)acetonitrile could also generate C(sp2)-H and C(sp3)-H coupling. The coupling reaction occurred as a typical radial mechanism. Conclusion: An unprecedented cyano-induced, NaNO2-catalyzed oxidative C(sp3)-H and C(sp2)-H coupling was reported. The reaction proceeded under very mild conditions, using O2 in the air as terminal oxidant. The unique oxidative manner might provide more inspiration for the development of intriguing oxidative coupling reactions.


2011 ◽  
Vol 396-398 ◽  
pp. 2411-2415 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

Isoamyl acetate was synthesized from isoamylol and glacial acetic acid with strong acidic cation exchanger as catalyst. The effects of reaction conditions such as acid-alcohol ratio, reaction time, catalyst dosage to esterification reaction have been investigated and the optimum reaction conditions can be concluded as: the molar ratio of acetic acid to isoamylol 0.8:1, reaction time 2h, 25 % of catalyst (quality of acetic acid as benchmark). The conversion rate can reach up to 75.46%. The catalytic ability didn’t reduce significantly after reusing 10 times and the results showed that the catalyst exhibited preferably catalytic activity and reusability.


ChemInform ◽  
2012 ◽  
Vol 43 (27) ◽  
pp. no-no
Author(s):  
Daichao Xu ◽  
Chunxin Lu ◽  
Wanzhi Chen

2021 ◽  
Vol 25 ◽  
Author(s):  
Pedro Alves Bezerra Morais ◽  
Carla Santana Francisco ◽  
Heberth de Paula ◽  
Rayssa Ribeiro ◽  
Mariana Alves Eloy ◽  
...  

: Historically, the medicinal chemistry is concerned with the approach of organic chemistry to new drug synthesis. Considering the fruitful collections of new molecular entities, the dedicated efforts for medicinal chemistry are rewarding. Planning and search of new and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since the 19th century, notoriously the application of isolated and characterized plant-derived compounds in modern drug discovery and in various stages of clinical development highlight its viability and significance. Natural products influence a broad range of biological processes, covering transcription, translation, and post-translational modification and being effective modulators of almost all basic cellular processes. The research of new chemical entities through “click chemistry” continuously opens up a map for the remarkable exploration of chemical space in towards leading natural products optimization by structure-activity relationship. Finally, here in this review, we expect to gather a broad knowledge involving triazolic natural products derivatives, synthetic routes, structures, and their biological activities.


1980 ◽  
Vol 33 (6) ◽  
pp. 1323 ◽  
Author(s):  
JB Bremner ◽  
EJ Browne ◽  
PE Davies ◽  
CLWAH Raston

The heterocyclic derivatives, 8,9-dimethoxy-3-methyl-1-phenyl-3,4,5,6- tetrahydro-1H-2,3-benzoxazocine(3a) and 9,10-dimethoxy-3-methyl-1- phenyl-1,3,4,5,6,7-hexahydro-2,3-benzoxazonine (3b),examples of two new ring systems, have been prepared by Meisenheimer rearrangement of the corresponding 2-benzazepine and 2-benzazocine N-oxide derivatives (2a) and (2b). The Bischler-Napieralski-type cyclization reaction was used in the preparation of the tertiary amine precursors of these N-oxides reaction conditions for the cyclization were critical and phosphorus oxychloride in refluxing butanenitrile was found to give the best yields of the seven- or eight-membered cyclic imine intermediates. Reductive cleavage of the benzoxazocine derivative (3a) with zinc in acetic acid followed by N-methylation gave the expected product, [2-{3- (dimethylamino)propyl}-4,5-di-methoxyphenyl]phenylmethanol (12). The crystal and molecular structure of (3a) has been determined by X-ray crystallographic analysis.


Author(s):  
Reinhold Zimmer ◽  
Elmar Schmidt ◽  
Michal Andrä ◽  
Marcel-Antoine Duhs ◽  
Igor Linder ◽  
...  

A number of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8 and 9 have been prepared in good yields via cross coupling reactions of halogenated precursors 2, which in turn are easily accessible by bromination of 6H-1,2-oxazines 1. Lewis-acid promoted reaction of 1,2-oxazine 9c with 1-hexyne provided alkynyl-substituted pyridine derivative 12 thus demonstrating the potential of this approach for the synthesis of pyridines.


10.5219/1062 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 344-350 ◽  
Author(s):  
Pavel Diviš ◽  
Jaromír Pořízka ◽  
Jakub Kříkala

Drinking coffee has become part of our everyday culture. Coffee cultivation is devoted to over 50 countries in the world, located between latitudes 25 degrees North and 30 degrees South. Almost all of the world's coffee production is provided by two varieties, called ‘Arabica’ and ‘Robusta’ whereas the share of Arabica is 70% of the world's coffee harvest. Green (raw) coffee can not be used to prepare coffee beverages, coffee beans must first be roasted. Roasting coffee and reaching a certain degree of coffee roasting determine its flavor and aroma characteristics. In the present study the fate of sucrose, chlorogenic acid, acetic acid, formic acid, lactic acid, caffeic acid, total phenolic compounds and 5-hydroxymethylfurfural was studied in coffee (Brazil Cerrado Dulce, 100% Arabica) roasted in two ways (Medium roast and Full city roast). It has been found that almost all sucrose has been degraded (96 – 98%) in both roasting ways. During Medium roast 65% of chlorogenic acid contained in green coffee was degraded while during Full city roast it was 85%. During both Medium and Full city roasting, the formation of acetic acid but especially formic and lactic acid was recorded. The highest concentration of organic acids was recorded at Full City roasting at medium roasting times (3.3 mg.g-1 d.w. acetic acid, 1.79 mg.g-1 d.w. formic  acid, 0.65 mg.g-1d.w. lactic acid). The amount of phenolic substances also increased during roasting up to 16.7 mg.g-1 d.w. of gallic acid equivalent. Highest concentrations of 5-hydroxymethylfurfural were measured at medium roasting times at both Medium (0.357 mg.g-1 d.w.) and French city (0.597 mg.g-1 d.w.) roasting temperatures. At the end of roasting, the 5-hydroxymethylfurfural concentration in coffee were 0.237 mg.g-1 d.w. (Medium roast) and 0.095 mg.g-1 d.w. (Full city roast).


Sign in / Sign up

Export Citation Format

Share Document