The Structure Elucidation of Haprolid

Synthesis ◽  
2017 ◽  
Vol 50 (03) ◽  
pp. 529-538 ◽  
Author(s):  
Markus Kalesse ◽  
Jun Li ◽  
Jun Xing ◽  
Daniel Lücke ◽  
Dennis Lübken ◽  
...  

The assignment of two stereocenters of the natural product haprolid through the application of a profile hidden Markov model (HMM) and its confirmation through total synthesis of the natural product and of two of its diastereomers are reported. The structure elucidation of this polyketide-peptide hybrid natural product is a telling showcase of how difficult it can be to determine the absolute configuration of isolated stereocenters and the benefits of a gene cluster analysis for structure determination. The key steps of the synthesis are a selective epoxidation of a terminal olefin and the stereodivergent macrolactonization strategy. Furthermore, the biological evaluation of all products showed that all diastereomers are potent inhibitors of hepatocellular carcinoma cell lines.

2021 ◽  
Vol 20 ◽  
pp. 153303382110279
Author(s):  
SiZhe Yu ◽  
Yu Wang ◽  
KeJia Lv ◽  
Jia Hou ◽  
WenYuan Li ◽  
...  

Purpose: The high fatality-to-case ratio of hepatocellular carcinoma is directly related to metastasis. The signal transducer and activator of transcription-3 is a key mediator of the cytokine and growth factor signaling pathways and drives the transcription of genes responsible for cancer-associated phenotypes. However, so far, no specific inhibitor for signal transducer and activator of transcription-3 has been used in clinical practice. Therefore, targeting the signal transducer and activator of transcription-3 for cancer therapy is highly desired to improve outcomes in patients with hepatocellular carcinoma. Experimental Design: Using the small-molecule inhibitor NT157, the effect of signal transducer and activator of transcription-3 inhibition on cell migration was tested in hepatocellular carcinoma cell lines and a lung metastasis model of the disease. Results: NT157 significantly inhibited the migration of hepatocellular carcinoma cell lines in vitro and lung metastasis of hepatocellular carcinoma in vivo. Mechanistically, it inhibited the phospho-signal transducer and activator of transcription-3 in a dose- and time-dependent manner. Furthermore, NT157 treatment suppressed the c-Jun activation domain-binding protein-1 levels in the nucleus but no significant decrease was observed in its expression in the cytoplasm. Finally, high mRNA expression levels of signal transducer and activator of transcription-3 and c-Jun activation domain-binding protein-1 in hepatocellular carcinoma were associated with significantly low survival rates. Conclusion: NT157 inhibits hepatocellular carcinoma migration and metastasis by downregulating the signal transducer and activator of transcription-3/c-Jun activation domain-binding protein-1 signaling pathway and targeting it may serve as a novel therapeutic strategy for the clinical management of hepatocellular carcinoma in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoxi Fan ◽  
Zhongwei Zhao ◽  
Jingjing Song ◽  
Dengke Zhang ◽  
Fazong Wu ◽  
...  

Abstract Background Accumulating evidences have been reported that long noncoding RNAs play crucial roles in the progression of hepatocellular carcinoma (HCC). SnoRNA host gene 6 (SNHG6) is believed to be involved in several human cancers, but the specific molecular mechanism of SNHG6 in HCC is not well studied. Methods In this study, we experimentally down-regulated the SNHG6 in two hepatocellular carcinoma cell lines in vitro, and then measured the proliferation, migration and invasion abilities and the apoptotic levels. Also, we performed the xenograft assay to investigate the function of SNHG6 during the tumor growth in vivo. Results We found SNHG6 was highly expressed in HCC tissues. Next, using Hep3B and Huh7 cells, we confirmed knockdown of SNHG6 reduced the proliferation, migration and invasion abilities in vitro. Also, by bioinformatics analysis, further molecular and cellular experiments, we found miR-6509-5p bound to SNHG6 directly, and the expression level of HIF1A was regulated through SNHG6/miR-6509-5p axis. Finally, we found that down-regulation of SNHG6 dramatically reduced the tumor growth ability of Huh7 cells in vivo. Conclusions We concluded that SNHG6/miR-6509-5p/HIF1A axis functioned in the progression of hepatocellular carcinoma, and could be the promising therapeutic targets during the development of hepatocellular carcinoma drugs.


Sign in / Sign up

Export Citation Format

Share Document