Identification of natural compounds with analgesic and anti-inflammatory properties using machine learning and molecular docking studies

Author(s):  
Mohammad Firoz Khan ◽  
Ridwan Bin Rashid ◽  
Mohammad A. Rashid

Background: Natural products have been a rich source of compounds for drug discovery. Usually, compounds obtained from natural sources have little or no side effects, thus searching for new lead compounds from traditionally used plant species is still a rational strategy. Introduction: Natural products serve as a useful repository of compounds for new drugs; however, their use has been decreasing, in part because of technical barriers to screening natural products in high-throughput assays against molecular targets. To address this unmet demand, we have developed and validated a high throughput in silico machine learning screening method to identify potential compounds from natural sources. Methods: In the current study, three machine learning approaches, including Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting Machine (GBM) have been applied to develop the classification model. The model was generated using the cyclooxygenase-2 (COX-2) inhibitors reported in the ChEMBL database. The developed model was validated by evaluating the accuracy, sensitivity, specificity, Matthews correlation coefficient and Cohen’s kappa statistic of the test set. The molecular docking study was conducted on AutoDock vina and the results were analyzed in PyMOL. Results: The accuracy of the model for SVM, RF and GBM was found to be 75.40 %, 74.97 % and 74.60 %, respectively which indicates the good performance of the developed model. Further, the model has demonstrated good sensitivity (61.25 % - 68.60 %) and excellent specificity (77.72 %- 81.41 %). Application of the model on the NuBBE database, a repository of natural compounds, led us to identify a natural compound, enhydrin possessing analgesic and anti-inflammatory activities. The ML methods and the molecular docking study suggest that enhydrin likely demonstrates its analgesic and anti-inflammatory actions by inhibiting COX-2. Conclusion: Our developed and validated in silico high throughput ML screening methods may assist in identifying drug-like compounds from natural sources.

Author(s):  
Hassanein H Hassanein ◽  
Doaa E Abdel Rahman ◽  
Marwa A Fouad ◽  
Rehab F Ahmed

New hexahydropyrimido[1,2- a]azepine derivatives bearing functionalized aryl and heterocyclic moieties were synthesized as anti-inflammatory agents with better safety profiles. All synthesized compounds were assessed in vitro for their COX-1 and COX-2 inhibition activities. The most selective compounds, 2f, 5 and 6, were further evaluated for their in vivo anti-inflammatory activity and PGE2 inhibitory activity. To rationalize their selectivity, molecular docking within COX-1 and COX-2 binding sites was performed. Their physicochemical properties and drug-like nature profile were also calculated. The good activity and selectivity of compounds 2f, 5 and 6 were rationalized using a molecular docking study and supported by in vivo studies. These promising findings are encouraging for performing future investigations of these derivatives.


Author(s):  
Amit N. Panaskar ◽  
Ashish Jain ◽  
Pradeep Kumar Mohanty

Aim: Currently, researchers have developed a lot of new active substances as anti-inflammatory agents. One of the target proteins for anti-inflammatory agents is the selective COX-2 active site. Selective COX-2 inhibition is the regulator of the inflammatory reaction cascade. In this research, 3, 4- Dihydropyrimidone derivatives were used to design the anti-inflammatory agent through a selective COX-2 inhibition. The potential activity of 3, 4- Dihydropyrimidone derivatives maybe increase due to the preparation of the Schiff base with aromatic aldehydes. Selective COX-2 inhibition was required to predict their anti-inflammatory activity so, the aim in the present study, molecular docking study of 3,4- dihydropyrimidone derivatives have performed using COX-2 enzyme active site. Methodology: The molecular docking of 3, 4-dihydropyrimidone derivatives were carried out using AutoDock vina Ver.1.1.2. Twenty 3,4-dihydropyrimidone derivatives were docked into the COX-2 active site with Protein data bank code 3LN1. The interactions were evaluated based on the docking score. Celecoxib was used as the reference standard for this study. Results: Twenty 3, 4- dihydropyrimidone derivatives showed the approximate docking score -8.4 to -10.1 kcal/mol. Fourteen 3,4-dihydropyrimidone derivatives have a greater docking score compared to celecoxib used as a standard compound. Derivative D-1 had higher binding energy than other 3,4-dihydropyrimidone derivatives because it has the smallest docking score. Conclusion: All new 3,4-dihydropyrimidone derivatives are feasible to synthesize and performed their in-vitro evaluation.


2015 ◽  
Author(s):  
Manik Ghosh ◽  
Kamal Kant ◽  
Anoop Kumar ◽  
Padma Behera ◽  
Naresh Rangra ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 85-90
Author(s):  
Sagarika Biswas

Background: Rheumatoid Arthritis (RA) is an autoimmune disorder of symmetric synovial joints which is characterized by the chronic inflammation with 0.5-1% prevalence in developed countries. Presence of persistent inflammation is attributed to the major contribution of key inflammatory cytokine and tumour necrosis factor- alpha (TNF- &#945;). Recent drug designing studies are developing TNF-&#945; blockers to provide relief from the symptoms of the disease such as pain and inflammation. Available blockers are showing certain limitations such as it may enhance the rate of tuberculosis (TB) occurrence, lymphoma risk, cost issues and certain infections are major concern. Discussed limitations implicated a need of development of some alternative drugs which exhibit fewer side effects with low cost. Therefore, we have identified anti-inflammatory compounds in an underutilized fruit of Baccaurea sapida (B.sapida) in our previous studies. Among them quercetin have been identified as the most potent lead compound for drug designing studies of RA. </P><P> Methods: In the present article, characterization of quercetin has been carried out to check its drug likeliness and molecular docking study has been carried out between TNF- &#945; and quercetin by using AutoDock 4.2.1 software. Further, inhibitory effect of B. sapida fruit extract on RA plasma has been analysed through immunological assay ELISA. </P><P> Results: Our in-silico analysis indicated that quercetin showed non carcinogenic reaction in animal model and it may also cross the membrane barrier easily. We have studied the ten different binding poses and best binding pose of TNF-&#945; and quercetin showed -6.3 kcal/mol minimum binding energy and 23.94 &#181;M inhibitory constant. In addition to this, ELISA indicated 2.2 down regulated expression of TNF-&#945; in RA compared to control. </P><P> Conclusion: This study may further be utilized for the drug designing studies to reduce TNF-&#945; mediated inflammation in near future. This attempt may also enhance the utilization of this plant worldwide.


2016 ◽  
Vol 24 (9) ◽  
pp. 2032-2042 ◽  
Author(s):  
Maged A. Abdel-Sayed ◽  
Said M. Bayomi ◽  
Magda A. El-Sherbeny ◽  
Naglaa I. Abdel-Aziz ◽  
Kamal Eldin H. ElTahir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document