Sleep in Children with Neuromuscular Diseases

2017 ◽  
Vol 06 (04) ◽  
pp. 191-198
Author(s):  
Elisabetta Verrillo ◽  
Renato Cutrera ◽  
Alessandro Onofri
2016 ◽  
Vol 47 (S 01) ◽  
Author(s):  
M. Schroth ◽  
C. Reihle ◽  
M. Wachowsky ◽  
L. Travan ◽  
M. Buob ◽  
...  

2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
M Perea de Posadas ◽  
M del Carmen

2006 ◽  
Vol 37 (06) ◽  
Author(s):  
A Hahn ◽  
I Kafadar ◽  
V Busch ◽  
BA Neubauer

1998 ◽  
Vol 55 (6) ◽  
pp. 879-879
Author(s):  
B. S. Russman

2021 ◽  
Vol 22 (8) ◽  
pp. 4274
Author(s):  
Dèlia Yubero ◽  
Daniel Natera-de Benito ◽  
Jordi Pijuan ◽  
Judith Armstrong ◽  
Loreto Martorell ◽  
...  

The diagnosis of neuromuscular diseases (NMDs) has been progressively evolving from the grouping of clinical symptoms and signs towards the molecular definition. Optimal clinical, biochemical, electrophysiological, electrophysiological, and histopathological characterization is very helpful to achieve molecular diagnosis, which is essential for establishing prognosis, treatment and genetic counselling. Currently, the genetic approach includes both the gene-targeted analysis in specific clinically recognizable diseases, as well as genomic analysis based on next-generation sequencing, analyzing either the clinical exome/genome or the whole exome or genome. However, as of today, there are still many patients in whom the causative genetic variant cannot be definitely established and variants of uncertain significance are often found. In this review, we address these drawbacks by incorporating two additional biological omics approaches into the molecular diagnostic process of NMDs. First, functional genomics by introducing experimental cell and molecular biology to analyze and validate the variant for its biological effect in an in-house translational diagnostic program, and second, incorporating a multi-omics approach including RNA-seq, metabolomics, and proteomics in the molecular diagnosis of neuromuscular disease. Both translational diagnostics programs and omics are being implemented as part of the diagnostic process in academic centers and referral hospitals and, therefore, an increase in the proportion of neuromuscular patients with a molecular diagnosis is expected. This improvement in the process and diagnostic performance of patients will allow solving aspects of their health problems in a precise way and will allow them and their families to take a step forward in their lives.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 998
Author(s):  
Rosario Licitra ◽  
Maria Marchese ◽  
Letizia Brogi ◽  
Baldassare Fronte ◽  
Letizia Pitto ◽  
...  

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an inherited neuromuscular disorder that causes loss of muscle mass and motor skills. In the era of genomic medicine, there is still no known cure for DMD. In clinical practice, there is a growing awareness of the possible importance of nutrition in neuromuscular diseases. This is mostly the result of patients’ or caregivers’ empirical reports of how active substances derived from food have led to improved muscle strength and, thus, better quality of life. In this report, we investigate several nutraceutical principles in the sapje strain of zebrafish, a validated model of DMD, in order to identify possible natural products that, if supplemented in the diet, might improve the quality of life of DMD patients. Gingerol, a constituent of fresh ginger, statistically increased the locomotion of mutant larvae and upregulated the expression of heme oxygenase 1, a target gene for therapy aimed at improving dystrophic symptoms. Although three other compounds showed a partial positive effect on locomotor and muscle structure phenotypes, our nutraceutical screening study lent preliminary support to the efficacy and safety only of gingerol. Gingerol could easily be proposed as a dietary supplement in DMD.


Sign in / Sign up

Export Citation Format

Share Document