Nanogold(0)-Catalyzed Addition of Heteroelement σ Linkages to Functional Groups

Synthesis ◽  
2019 ◽  
Vol 51 (12) ◽  
pp. 2435-2454 ◽  
Author(s):  
Manolis Stratakis ◽  
Ioannis N. Lykakis

In recent years, supported Au nanoparticles and nanoporous Au materials have shown remarkable catalytic activity in the activation of σ heteroelement linkages such as, Si–H, Si–Si, B–B and B–Si, and their subsequent addition to functional groups, primarily π bonds. In this review article we discuss the reaction modes known to date, and attempt to discuss the mechanistic clues of these transformations which are rather unexpected in terms of conventional transition-metal catalysis concepts, given that the catalytic sites are metallic Au(0).1 Introduction2 Activation of Hydrosilanes2.1 Reactions of Hydrosilanes with Alkynes2.1.1 Hydrosilylation2.1.2 Dehydrogenative Coupling2.2 Reactions of Hydrosilanes with Allenes2.3 Reactions of Hydrosilanes with Carbonyl Compounds and Imines2.4 Reactions of Hydrosilanes with α-Diazo Carbonyl Compounds2.5 Miscellaneous Transformations from the Nano Au-Catalyzed Activation­ of Hydrosilanes3 Activation of Disilanes3.1 Disilylation of Alkynes3.2 Reactions of 1,1,2,2-Tetramethyldisilane with Alkynes4 Activation of Diboranes4.1 Diborylation of Alkenes4.2 Diborylation of Alkynes4.3 Diborylation of Allenes4.4 Diborylation of Methylenecyclopropanes5 Activation of Silylboranes5.1 Silaboration of Alkynes5.2 Silaboration of Allenes5.3 Silaboration of Unactivated Epoxides and Oxetanes5.4 Reactions of Silylboranes with Aromatic Carbonyl Compounds6 Conclusions and Future Perspectives

2019 ◽  
Author(s):  
Swaraj Sengupta ◽  
Sahanwaj Khan ◽  
Shyamal K. Chattopadhyay ◽  
Indrani Banerjee ◽  
Tarun K. Panda ◽  
...  

Synthesis and characterisation of one trinuclear copper complex, ([Cu<sub>3</sub>L<sub>3</sub>O]ClO<sub>4</sub>) (<b>1</b>) and one nickel complex ([Ni(L'H)<sub>2</sub>(dmso)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>) (<b>2</b>) with Schiff base ligands: (3Z)-3-((Z)-(1-(thiophen-2-yl)ethylidene)hydrazono)butan-2-one oxime (LH) and 1-(pyridin-2-yl)ethylidene)hydrazono)butan-2-one oxime (L<sup>'</sup>H). <b>1</b> shows high catecholase activity and has also been tested as a catalyst for the synthesis of benzylimine. <b>2 </b> shows phenoxazinone synthase activity.


2019 ◽  
Vol 377 (6) ◽  
Author(s):  
Samson Afewerki ◽  
Armando Córdova

AbstractThe concept of merging enamine activation catalysis with transition metal catalysis is an important strategy, which allows for selective chemical transformations not accessible without this combination. The amine catalyst activates the carbonyl compounds through the formation of a reactive nucleophilic enamine intermediate and, in parallel, the transition metal activates a wide range of functionalities such as allylic substrates through the formation of reactive electrophilic π-allyl-metal complex. Since the first report of this strategy in 2006, considerable effort has been devoted to the successful advancement of this technology. In this chapter, these findings are highlighted and discussed.


1968 ◽  
Vol 90 (23) ◽  
pp. 6453-6457 ◽  
Author(s):  
C. C. Greig ◽  
Colin D. Johnson

Synlett ◽  
2017 ◽  
Vol 28 (18) ◽  
pp. 2425-2428 ◽  
Author(s):  
Bill Morandi ◽  
Yong Lee

We report that a Lewis acidic silane, Me2SiHCl, can mediate the direct cross-coupling of a wide range of carbonyl compounds with alcohols to form dialkyl ethers. The reaction is operationally simple, tolerates a range of polar functional groups, can be utilized to make sterically hindered ethers, and is extendable to sulfur and nitrogen nucleo­philes.


2018 ◽  
Vol 130 (48) ◽  
pp. 16013-16017 ◽  
Author(s):  
Huamin Wang ◽  
Li Zhang ◽  
Youshao Tu ◽  
Ruiqi Xiang ◽  
Yin-Long Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document