Heparin-induced Thrombocytopenia – Pathogenesis and Treatment

1999 ◽  
Vol 82 (S 01) ◽  
pp. 148-156 ◽  
Author(s):  
A. Greinacher

SummaryHeparin-induced thrombocytopenia (HIT) is now recognized as the most frequent immune-mediated adverse drug reaction. During the last decade, fundamental aspects of the pathogenesis of HIT have been resolved. The understanding of some the mechanisms underlying the development of new, paradox thromboembolic complications in HIT led to the concept that thrombin generation plays a key-role in clinically manifest HIT. Consequently new therapeutic concepts imply the use of drugs with either indirect of direct anti-thrombin activity such as donaparoid-sodium and the recombinant hirudin lepirudin. During the last years results of first prospective studies assessing various treatment regimens in HIT became available. Although data of randomized trials are still missing some treatment recommendations can already be drawn from these studies. This review summarizes key aspects of the pathogenesis of HIT and provides an overview of current treatment strategies.

Children ◽  
2018 ◽  
Vol 5 (11) ◽  
pp. 148 ◽  
Author(s):  
Peter Zage

While recent increases in our understanding of the biology of neuroblastoma have allowed for more precise risk stratification and improved outcomes for many patients, children with high-risk neuroblastoma continue to suffer from frequent disease relapse, and despite recent advances in our understanding of neuroblastoma pathogenesis, the outcomes for children with relapsed neuroblastoma remain poor. These children with relapsed neuroblastoma, therefore, continue to need novel treatment strategies based on a better understanding of neuroblastoma biology to improve outcomes. The discovery of new tumor targets and the development of novel antibody- and cell-mediated immunotherapy agents have led to a large number of clinical trials for children with relapsed neuroblastoma, and additional clinical trials using molecular and genetic tumor profiling to target tumor-specific aberrations are ongoing. Combinations of these new therapeutic modalities with current treatment regimens will likely be needed to improve the outcomes of children with relapsed and refractory neuroblastoma.


2018 ◽  
Vol 80 (1-2) ◽  
pp. 93-99 ◽  
Author(s):  
Mirla Avila ◽  
Arpana Bansal ◽  
John Culberson ◽  
Alan N. Peiris

Multiple sclerosis (MS) is a chronic inflammatory demyelination disorder with an immune-mediated pathophysiology that affects the central nervous system (CNS). Like other autoimmune conditions, it has a predilection for female gender. This suggests a gender bias and a possible hormonal association. Inflammation and demyelination are hallmarks of MS. Oligodendrocytes are the myelinating cells of the CNS and these continue to be generated by oligodendrocyte precursor cells (OPCs). The process of remyelination represents a major form of plasticity in the developing adult CNS. Remyelination does occur in MS, but the process is largely inadequate and/or incomplete. Current treatment strategies primarily focus on reducing inflammation or immunosuppression, but there is a need for more extensive research on re-myelination as a possible mechanism of treatment. Previous studies have shown that pregnancy leads to an increase in OPC proliferation, oligodendrocyte generation and the number of myelinated axons in the maternal CNS. Studies have also suggested that this remyelination is possibly mediated by estriol. Sex hormones in particular have been shown to have an immuno-protective effect in TH1-driven autoimmunity diseases. The aim of our article is to review the available research on sex hormone-specific immune modulatory effects, assess its remyelination potential in MS, and suggest a future path for more extensive research on sex hormone as a target for therapeutics in MS.


2006 ◽  
Vol 34 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Seung Uk Lee ◽  
Joanna J. Wykrzykowska ◽  
Roger J. Laham

End-stage ischemic cardiomyopathy patients are an ever-increasing group of coronary artery disease patients, often with no options in our current treatment armamentarium. Angiogenesis therapy pre-clinical and phase I clinical trials showed great promise, however, the benefits of single growth factor treatments have not been borne out in the larger phase II randomized trials. The complexity of angiogenesis process and the challenges in creating animal models to replicate and study this process in ischemic adult human myocardium have been major limitations to progress in this field. In addition failure to control for the powerful placebo effect in the clinical trials and inadequate methods of outcomes measures assessment have created difficult to overcome road blocks in establishing the efficacy of angiogenic strategies. Herein we review the challenges of angiogenesis research and development of treatment strategies. We also propose a structured model for further investigations of angiogenic therapies. The adherence to such a regimented approach as proposed here is, in our opinion, the only way to achieve success in angiogenesis approach development to treatment of patients with end-stage cardiac ischemia refractory to other established therapies.


2021 ◽  
Vol 10 (4) ◽  
pp. 670
Author(s):  
Farah Tamirou ◽  
Frédéric A. Houssiau

Lupus nephritis (LN) is a frequent and severe manifestation of systemic lupus erythematosus. The main goal of the management of LN is to avoid chronic kidney disease (CKD). Current treatment strategies remain unsatisfactory in terms of complete renal response, prevention of relapses, CKD, and progression to end-stage kidney disease. To improve the prognosis of LN, recent data suggest that we should (i) modify our treat-to-target approach by including, in addition to a clinical target, a pathological target and (ii) switch from conventional sequential therapy to combination therapy. Here, we also review the results of recent controlled randomized trials.


2019 ◽  
Vol 20 (10) ◽  
pp. 2557 ◽  
Author(s):  
Yuichiro Ukon ◽  
Takahiro Makino ◽  
Joe Kodama ◽  
Hiroyuki Tsukazaki ◽  
Daisuke Tateiwa ◽  
...  

Osteoporosis is an unavoidable public health problem in an aging or aged society. Anti-resorptive agents (calcitonin, estrogen, and selective estrogen-receptor modulators, bisphosphonates, anti-receptor activator of nuclear factor κB ligand antibody along with calcium and vitamin D supplementations) and anabolic agents (parathyroid hormone and related peptide analogs, sclerostin inhibitors) have major roles in current treatment regimens and are used alone or in combination based on the pathological condition. Recent advancements in the molecular understanding of bone metabolism and in bioengineering will open the door to future treatment paradigms for osteoporosis, including antibody agents, stem cells, and gene therapies. This review provides an overview of the molecular mechanisms, clinical evidence, and potential adverse effects of drugs that are currently used or under development for the treatment of osteoporosis to aid clinicians in deciding how to select the best treatment option.


VASA ◽  
2012 ◽  
Vol 41 (5) ◽  
pp. 313-318 ◽  
Author(s):  
Ernemann ◽  
Bender ◽  
Melms ◽  
Brechtel ◽  
Kobba ◽  
...  

Interventional therapies using angioplasty and stenting of symptomatic stenosis of the proximal supraaortic vessels have evolved as safe and effective treatment strategies. The aim of this paper is to summarize the current treatment concepts for stenosis in the subclavian and brachiocephalic artery with regard to clinical indication, interventional technique including selection of the appropriate vascular approach and type of stent, angiographic and clinical short-term and long-term results and follow-up. The role of hybrid interventions for tandem stenoses of the carotid bifurcation and brachiocephalic artery is analysed. A systematic review of data for angioplasty and stenting of symptomatic extracranial vertebral artery stenosis is discussed with a special focus on restenosis rate.


2020 ◽  
Vol 26 (40) ◽  
pp. 5089-5099 ◽  
Author(s):  
Irene Simonetta ◽  
Antonino Tuttolomondo ◽  
Mario Daidone ◽  
Salvatore Miceli ◽  
Antonio Pinto

: Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, predominantly globotriaosylsphingosine (Gb3) in lysosomes, as well as other cellular compartments of several tissues, causing multi-organ manifestations (acroparesthesias, hypohidrosis, angiokeratomas, signs and symptoms of cardiac, renal, cerebrovascular involvement). Pathogenic mutations lead to a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA). In the presence of high clinical suspicion, a careful physical examination and specific laboratory tests are required. Finally, the diagnosis of Fabry’s disease is confirmed by the demonstration of the absence of or reduced alpha-galactosidase A enzyme activity in hemizygous men and gene typing in heterozygous females. Measurement of the biomarkers Gb3 and Lyso Gb3 in biological specimens may facilitate diagnosis. The current treatment of Anderson-Fabry disease is represented by enzyme replacement therapy (ERT) and oral pharmacological chaperone. Future treatments are based on new strategic approaches such as stem cell-based therapy, pharmacological approaches chaperones, mRNA therapy, and viral gene therapy. : This review outlines the current therapeutic approaches and emerging treatment strategies for Anderson-Fabry disease.


2019 ◽  
Vol 21 (1) ◽  
pp. 495-521 ◽  
Author(s):  
Caroline A. Murphy ◽  
Atul K. Garg ◽  
Joana Silva-Correia ◽  
Rui L. Reis ◽  
Joaquim M. Oliveira ◽  
...  

The treatment of meniscus injuries has recently been facing a paradigm shift toward the field of tissue engineering, with the aim of regenerating damaged and diseased menisci as opposed to current treatment techniques. This review focuses on the structure and mechanics associated with the meniscus. The meniscus is defined in terms of its biological structure and composition. Biomechanics of the meniscus are discussed in detail, as an understanding of the mechanics is fundamental for the development of new meniscal treatment strategies. Key meniscal characteristics such as biological function, damage (tears), and disease are critically analyzed. The latest technologies behind meniscal repair and regeneration are assessed.


Sign in / Sign up

Export Citation Format

Share Document