Recombinant Thrombomodulin and Activated Protein C in the Treatment of Disseminated Intravascular Coagulation

1999 ◽  
Vol 82 (08) ◽  
pp. 718-721 ◽  
Author(s):  
Ikuro Maruyama

IntroductionThe blood coagulation cascade is regulated by the luminal surface of the endothelial cell lining.1 Endothelial cells synthesize tissue factor pathway inhibitor (TFPI), which, in part, binds to the cell surface glycosaminoglycans and inhibits factors Xa, VIIa, and tissue factor.2 Endothelial cells also produce and exhibit thrombomodulin (TM) on their luminal surface.3 TM is a kind of thrombin receptor that forms a 1:1 complex with thrombin. In this complex, thrombin activates protein C (PC) more than 1,000-fold more than thrombin alone. TM then loses its procoagulant activities, which include fibrinogen clotting, activation of factors V and VIII, and platelet activation. Thus, TM converts thrombin from a procoagulant protease to an anticoagulant. Pathologic states, such as an endothelial injury or perturbation or continuous rapid coagulation cascade activation, overcomes the endothelial regulating activity, resulting in the development of intravascular coagulation and the induction of disseminated intravascular coagulation (DIC). Theoretically, then, supplementing soluble TM or activated PC (APC) to reconstitute the endothelial coagulation regulation system in the circulation and regulate pathologically-activated blood coagulation could be beneficial. In this chapter, application of soluble TM and APC in the treatment of DIC is reviewed.

2006 ◽  
Vol 44 (1) ◽  
pp. 53-57
Author(s):  
Mirosław Prazanowski ◽  
Barbara Kur ◽  
Małgorzata Barańska ◽  
Waldemar Lutz ◽  
Bożena Piłacik ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4823-4827 ◽  
Author(s):  
Marcel Levi ◽  
Janine Dörffler-Melly ◽  
Pieter Reitsma ◽  
Harry Büller ◽  
Sandrine Florquin ◽  
...  

Abstract In the pathogenesis of sepsis and disseminated intravascular coagulation (DIC), dysfunctional anticoagulant pathways are important. The function of the protein C system in DIC is impaired because of low levels of protein C and down-regulation of thrombomodulin. The administration of (activated) protein C results in an improved outcome in experimental and clinical studies of DIC. It is unknown whether congenital deficiencies in the protein C system are associated with more severe DIC. The aim of the present study was to investigate the effect of a heterozygous deficiency of protein C on experimental DIC in mice. Mice with single-allele targeted disruption of the protein C gene (PC+/–) mice and wild-type littermates (PC+/+) were injected with Escherichia coli endotoxin (50 mg/kg) intraperitoneally. PC+/–mice had more severe DIC, as evidenced by a greater decrease in fibrinogen level and a larger drop in platelet count. Histologic examination showed more fibrin deposition in lungs, kidneys, and liver in mice with a heterozygous deficiency of protein C. Interestingly, PC+/– mice had significantly higher levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β, indicating an interaction between the protein C system and the inflammatory response. Survival was lower at 12 and 24 hours after endotoxin in the PC+/– mice. These results confirm the important role of the protein C system in the coagulative-inflammatory response on endotoxemia and may suggest that congenital deficiencies in the protein C system are associated with more severe DIC and adverse outcome in sepsis.


Blood ◽  
2012 ◽  
Vol 120 (10) ◽  
pp. 2133-2143 ◽  
Author(s):  
Roxane Darbousset ◽  
Grace M. Thomas ◽  
Soraya Mezouar ◽  
Corinne Frère ◽  
Rénaté Bonier ◽  
...  

AbstractFor a long time, blood coagulation and innate immunity have been viewed as interrelated responses. Recently, the presence of leukocytes at the sites of vessel injury has been described. Here we analyzed interaction of neutrophils, monocytes, and platelets in thrombus formation after a laser-induced injury in vivo. Neutrophils immediately adhered to injured vessels, preceding platelets, by binding to the activated endothelium via leukocyte function antigen-1–ICAM-1 interactions. Monocytes rolled on a thrombus 3 to 5 minutes postinjury. The kinetics of thrombus formation and fibrin generation were drastically reduced in low tissue factor (TF) mice whereas the absence of factor XII had no effect. In vitro, TF was detected in neutrophils. In vivo, the inhibition of neutrophil binding to the vessel wall reduced the presence of TF and diminished the generation of fibrin and platelet accumulation. Injection of wild-type neutrophils into low TF mice partially restored the activation of the blood coagulation cascade and accumulation of platelets. Our results show that the interaction of neutrophils with endothelial cells is a critical step preceding platelet accumulation for initiating arterial thrombosis in injured vessels. Targeting neutrophils interacting with endothelial cells may constitute an efficient strategy to reduce thrombosis.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 539-546 ◽  
Author(s):  
Julie A. Oliver ◽  
Dougald M. Monroe ◽  
Frank C. Church ◽  
Harold R. Roberts ◽  
Maureane Hoffman

Abstract The protein C/protein S system is known to regulate thrombin generation in vivo by cleaving factors Va and VIIIa. We have examined the activity of activated protein C in several tissue factor–initiated models of coagulation. We used 4 models: monocytes as the tissue factor source with platelets as the thrombin-generating surface; endothelial cells as the tissue factor source with platelets as the thrombin-generating surface; endothelial cells as both the tissue factor source and the thrombin-generating surface; and relipidated tissue factor with lipid vesicles providing the surface for thrombin generation. With the lipid surface, activated protein C dose-dependently reduced thrombin generation. Similarly, when endothelial cells provided the only surface for thrombin generation, activated protein C dose-dependently decreased thrombin generation significantly. By contrast, whenever platelets were present, activated protein C only minimally affected the amount of thrombin generated. When endothelial cells were the tissue factor source with platelets providing the surface for thrombin generation, activated protein C did increase the time until the burst of thrombin generation but had minimal effects on the total amount of thrombin generated. Activated protein C had essentially no effect on thrombin generation when monocytes were the tissue factor source with platelets providing the surface for thrombin generation. From the studies reported here, we conclude that in vivo, despite the important role of the protein C system in regulating thrombosis, activated protein C does not serve as a primary regulator of platelet-dependent thrombin generation.


Sign in / Sign up

Export Citation Format

Share Document