scholarly journals A Short History of the Beginnings of Hospital Information Systems in Argentina

2012 ◽  
Vol 21 (01) ◽  
pp. 163-165
Author(s):  
V. Yácubsohn

Summary Objectives : To describe the development of early health information systems in Argentina and their impact on the development of professional societies in the discipline Methods : The first hospital information systems and health surveillance systems in Argentina are described and related to the rise of professional organizations for health informatics. Results : The early health information systems in Argentina are related to precursor developments in medical informatics. Conclusions : Argentina saw a number of hospital information systems developed starting in 1977, which had an important influence on the practice and experience in medical informatics in the country, and the participation of Argentine professionals in national, regional, and international activities in the field

2011 ◽  
pp. 913-932
Author(s):  
Aisha Naseer ◽  
Lampros K. Stergioulas

Healthcare is a vast domain encapsulating not only multiple sub-domains or sub-sectors but also many diverse operations and logistics within each sub-sector. This diversity needs to be handled in a systematic and well-characterized manner in order to maintain consistency of various healthcare tasks. Integration of health information systems within each healthcare sub-sectors is crucial for ubiquitous access and sharing of information. The emerging technology of HealthGrids holds the promise to successfully integrate health information systems and various healthcare entities onto a common, globally shared and easily accessible platform. Many different types of HealthGrids exist but there lacks a taxonomy to classify them into a hierarchical order. This chapter presents a well-characterized taxonomy of different types of HealthGrid and classifies them into four major types, namely BioGrid, MediGrid, PharmaGrid and CareGrid. Each of these HealthGrids possesses dedicated features and functionalities. The proposed taxonomy serves to better understand the realtionship among various HealthGrid types and would lay a basis for future research.


2009 ◽  
Vol 18 (01) ◽  
pp. 153-157
Author(s):  
A. Vero ◽  
L. Bessonart ◽  
A. Barbiel ◽  
M. Ferla ◽  
A. Margolis

Summary Objectives Health Information systems training is one of the bottlenecks in clinical systems implementation. In this article, a strategy to massively create and train interdisciplinary coordinating teams is described for a project in Uruguay at FEMI, a non-academic setting which includes 23 health care institutions across the country and a tertiary referral center in Montevideo. Methods A series of educational activities were designed for the local coordinating teams. They included both onsite and online formats, site visits, integrated with some of the project tasks. Results In total, 128 professionals from all the Institutions participated in one or more of the training sessions (onsite and online) and 87 of them accomplished one of the forms of training. Conclusions Massive basic health informatics training was possible in Uruguay through collaboration with academic institutions at the country and regional level. Next steps include an active involvement of nurses in the educational events and planning of massive training of end users.


Author(s):  
Aisha Naseer ◽  
Lampros K. Stergioulas

Healthcare is a vast domain encapsulating not only multiple sub-domains or sub-sectors but also many diverse operations and logistics within each sub-sector. This diversity needs to be handled in a systematic and well-characterized manner in order to maintain consistency of various healthcare tasks. Integration of health information systems within each healthcare sub-sectors is crucial for ubiquitous access and sharing of information. The emerging technology of HealthGrids holds the promise to successfully integrate health information systems and various healthcare entities onto a common, globally shared and easily accessible platform. Many different types of HealthGrids exist but there lacks a taxonomy to classify them into a hierarchical order. This chapter presents a well-characterized taxonomy of different types of HealthGrid and classifies them into four major types, namely BioGrid, MediGrid, PharmaGrid and CareGrid. Each of these HealthGrids possesses dedicated features and functionalities. The proposed taxonomy serves to better understand the realtionship among various HealthGrid types and would lay a basis for future research.


2020 ◽  
Vol 30 (Suppl 1) ◽  
pp. 193-202
Author(s):  
Karen Wang ◽  
Ian Hambleton ◽  
Erika Linnander ◽  
Luis Marenco ◽  
Saria Hassan ◽  
...  

Precision medicine seeks to leverage technology to improve the health for all individuals. Successful health information systems rely fundamentally on the integra­tion and sharing of data from a range of disparate sources. In many settings, basic infrastructure inequities exist that limit the usefulness of health information systems. We discuss the work of the Yale Transdis­ciplinary Collaborative Center for Health Disparities focused on Precision Medicine, which aims to improve the health of people in the Caribbean and Caribbean diaspora by leveraging precision medicine approaches. We describe a participatory informatics ap­proach to sharing data as a potential mecha­nism to reducing inequities in the existing data infrastructure.Ethn Dis. 2020;30(Suppl 1):193-202; doi:10.18865/ed.30.S1.193


Author(s):  
Sundeep Sahay ◽  
T Sundararaman ◽  
Jørn Braa

Establishment of health information systems has been a central objective of health sector reform in nearly all LMICs over the last two to three decades. Historically, reform processes have taken introduction of health information systems as inhertently strengthening health sector performance. But today it is more appropriate to talk of health sector strengthening as co-evolving with health information systems strengthening, each reinforcing the performance and reform agendas of the other. The need to build synergies is heightened as there are a multitude of global and national health reform processes underway, like those assoicated with the sustainable development goals or with universal health coverage and each of these have expanded informational needs, requiring robust, flexible, and evolving health information systems. An understanding of the challenges faced by efforts at health systems strengthening helps provide meaningful inputs into health information systems design and vice versa. Such an understanding will enrich public health informatics as an academic discipline, as an area of practice, and as a policy domain.


2010 ◽  
Vol 4 (1) ◽  
pp. 181-187 ◽  
Author(s):  
E.M Borycki ◽  
A.W Kushniruk

The purpose of this paper is to argue for an integration of cognitive and socio-technical approaches to assessing the impact of health information systems. Historically, health informatics research has examined the cognitive and socio-technical aspects of health information systems separately. In this paper we argue that evaluations of health information systems should consider aspects related to cognition as well as socio-technical aspects including impact on workflow (i.e. an integrated view). Using examples from the study of technology-induced error in healthcare, we argue for the use of simulations to evaluate the cognitive-socio-technical impacts of health information technology [36]. Implications of clinical simulations and analysis of cognitive-social-technical impacts are discussed within the context of the system development life cycle to improve health information system design, implementation and evaluation.


2010 ◽  
Vol 19 (01) ◽  
pp. 109-115 ◽  
Author(s):  
S. Luo ◽  
K. Zhang ◽  
B. Li

Summary Objective: Describing the challenges and advances in medical informatics in China from the perspectives of hospital information systems, workforce, and academic, and research advances. Methods: The paper summarizes information from the CMIA (China Medical Informatics Association and findings reported by CHIMA (China Hospital Information Management Association), including a White Paper on China Hospital Information Systems. Results: Biomedical and Health Informatics has grown considerably during the past decade in China, and is an important component of proposed government planning that includes development of healthcare cards, clinical workflow path rules, and rural medicine. CMIA has strengthened as an organization promoting education, research and academic activities, while CHIMA has sponsored many hospital-based activities, including workshops on technical and workforce IT priorities related to proposed reforms of China’s healthcare system. Conclusions: China’s challenges and opportunities in biomedical informatics and healthcare IT are considerable, with the former requiring greater promotion of academic research and educational opportunities through CMIA to support the burgeoning development of healthcare IT systems throughout the country. National and international collaboration and exchanges could lead to very useful comparative studies, Recommendations by CHIMA to the national government and academia focus on organizational and workforce standards, roles, and defining career paths for HIT professionals as well as CME education in healthcare informatics at the graduate university.


Author(s):  
Jim Warren ◽  
Karen Day ◽  
Martin Orr

In this chapter we aim to promote an understanding of the complexity of healthcare as a setting for information systems and how this complexity influences the achievement of successful implementations. We define health informatics and examine its role as an enabler in the delivery of healthcare. Then we look at the knowledge commodity culture of healthcare, with the gold standard of systematic reviews and its hierarchy of evidence. We examine the different forms of quantitative and qualitative research that are most commonly found in healthcare and how they influence the requirements for health information systems. We also examine some domain-specific issues that must be considered by health information systems developers, including those around clinical decision support systems and clinical classification and coding systems. We conclude with a discussion of the challenges that must be balanced by the health systems implementer in delivering robust systems that support evidence-based healthcare processes.


Sign in / Sign up

Export Citation Format

Share Document