Synergistic Cofactor Function of Factor V and Protein S to Activated Protein C in the Inactivation of the Factor Villa – Factor IXa Complex

1997 ◽  
Vol 78 (03) ◽  
pp. 1030-1036 ◽  
Author(s):  
Lei Shea ◽  
Xuhua He ◽  
Björn Dahlbäck

SummaryHuman factor V has been shown not only to be a precursor to procoagulant factor Va but also to express anticoagulant properties. Thus, factor V was recently found to potentiate the effect of protein S as cofactor to activated protein C (APC) in the inactivation of the factor VIIIa-factor IXa complex. The purpose of this study was to determine whether the APC-cofactor function of factor V was also expressed in the bovine protein C system and to elucidate the molecular background for the species specificity of APC. For this purpose, the effects of protein S and factor V on APC-mediated inactivation of factor VIIIa were studied using purified APC, protein S and factor V of human and bovine.origin. The factor VIIIa investigated here was part of a Xase complex (i.e. factor IXa, factor VIIIa, phospholipid and calcium) and the APC-mediated inhibition of factor VIIIa was monitored by the ability of the Xase complex to activate factor X. Synergistic APC-cofactor function of factor V and protein S was demonstrated in the bovine system. The effect of bovine APC was potentiated by bovine protein S but not by human protein S, whereas both human or bovine protein S stimulated the function of human APC. Factor V did not express species specificity in its APC-cofactor activity even though bovine factor V was more potent than its human counterpart. Recombinant human/bovine protein S chimeras were used to demonstrate that the thrombin sensitive region and first epidermal growth factor-like module of protein S determine the species specificity of the APC-protein S interaction. In conclusion, both human and bovine factor V were found to express APC-cofactor activity which depends on the presence of protein S. The species specificity of APC was shown to be caused by the interaction between APC and protein S.

2001 ◽  
Vol 85 (05) ◽  
pp. 761-765 ◽  
Author(s):  
Robbert van de Poel ◽  
Joost Meijers ◽  
Bonno Bouma

SummaryActivated protein C (APC) is an important inactivator of coagulation factors Va and VIIIa. In the inactivation of factors Va and VIIIa, protein S serves as a cofactor to APC. Protein S can bind to C4b-binding protein (C4BP), and thereby loses its cofactor activity to APC. By modulating free protein S levels, C4BP is an important regulator of protein S cofactor activity. In the factor VIIIa inactivation, protein S and factor V act as synergistic cofactors to APC. We investigated the effect of C4BP on both the factor V-independent and factor V-dependent cofactor activity of protein S in the factor VIIIa inactivation using a purified system. Protein S increased the APC-mediated inactivation of factor VIIIa to 60% and in synergy with protein S, factor V at equi-molar concentrations increased this effect further to 90%. The protein S/factor V synergistic effect was inhibited by preincubation of protein S and factor V with a four-fold molar excess of C4BP. However, C4BP did not inhibit the factor V-independent protein S cofactor activity in the purified system whereas it inhibited the cofactor activity in plasma. We conclude that C4BP-bound protein S retains its cofactor activity to APC in the factor VIIIa inactivation.


2000 ◽  
Vol 84 (08) ◽  
pp. 271-277 ◽  
Author(s):  
Petra Evenäs ◽  
Pablo García de Frutos ◽  
Gerry Nicolaes ◽  
Björn Dahlbäck

SummaryVitamin K-dependent protein S is a cofactor to the anticoagulant serine protease activated protein C (APC) in the proteolytic inactivation of the procoagulant, activated factor V (FVa) and factor VIII (FVIIIa). In the FVa degradation, protein S selectively accelerates the cleavage at Arg306, having no effect on the Arg506 cleavage. In the FVIIIa inactivation, the APC-cofactor activity of protein S is synergistically potentiated by FV, which thus has the capacity to function both as a pro- and an anticoagulant protein. The SHBG-like region of protein S, containing two laminin G-type domains, is required for the combined action of protein S and FV. To elucidate whether both G domains in protein S are needed for expression of APC-cofactor activities, chimeras of human protein S were created in which the individual G domains were replaced by the corresponding domain of the homologous Gas6, which in itself has no anticoagulant activity. In a plasmabased assay, chimera I (G1 from Gas6) was as efficient as wild-type recombinant protein S, whereas chimera II (G2 from Gas6) was less effective. The synergistic cofactor activity with FV in the inactivation of FVIIIa was lost by the replacement of the G2 domain in protein S (chimera II). However, chimera I did not exert full APC-cofactor activity in the FVIIIa degradation, indicating involvement of both G domains or the entire SHBG-like region in this reaction. Chimera I was fully active in the degradation of FVa in contrast to chimera II, which exhibited reduced cofactor activity compared to protein S. In conclusion, by using protein S-Gas6 chimeric proteins, we have identified the G2 domain of protein S to be indispensable for an efficient inactivation of both FVIIIa and FVa, whereas the G1 domain was found not to be of direct importance in the FVa-inactivation experiments.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3075-3075
Author(s):  
Thomas J Cramer ◽  
John H. Griffin ◽  
Andrew J. Gale

Abstract Factor V (FV) is a cofactor that promotes inactivation of activated factor VIII (FVIIIa) by the activated protein C and protein S complex (APC/protein S). Cleavage in FV at Arg506 is required for proteolytic inactivation of FVa, but also for the anticoagulant function of FV as cofactor for APC in the inactivation of FVIIIa. This is demonstrated by the well known FVLeiden mutant with Arg506 mutated to glutamine (Q506), causing APC resistance due to both impaired sensitivity of Q506FVa to APC and reduced cofactor activity of Q506FV for APC inactivation of FVIIIa. However, FVIIIa loses activity rapidly due to dissociation of the A2 domain, and this may be the primary mechanism of FVIIIa inactivation. Thus, we question whether the APC-mediated inactivation of FVIIIa is relevant to the FVLeiden thrombophilic phenotype. Rather, we hypothesized that FV can function as an anticoagulant cofactor for the APC/protein S complex in the inactivation of activated FV (FVa). To test this hypothesis, we designed a coagulation assay initiated by tissue factor that was sensitive to FV but was insensitive to FVIII. FV was titrated into FV deficient plasma and clotting times were measured in absence and presence of APC to determine an APC sensitivity ratio (APCsr). An increase in the APCsr was observed as the level of FV was increased, suggesting an anticoagulant function of FV. Similar titrations were done with Q506FV, showing no increase in clotting time when APC was present and an APCsr of 1.0 in the presence of Q506 FV. Control experiments confirmed that this clotting assay was insensitive to the presence or absence of FVIII; thus, these assays were reflecting FVa inactivation. The potential anticoagulant effect of FV as cofactor for APC in FVa inactivation was further investigated by monitoring proteolysis of purified FVa by APC over time using SDS PAGE. Recombinant purified FVa was labeled with a fluorescent dye, and then subjected to proteolysis by APC/protein S in the absence or presence of FV in a time course. The resulting FVa fragments seen on SDS gels reflected the known cleavages at Arg306 and Arg506, and the FVa cleavage products were quantified by digital fluorescent scanning of the gel. FV stimulated a small but statistically insignificant increase in the rate of FVa cleavage by APC/protein S. Thus, in our experimental conditions, we found a significant anticoagulant effect of FV in clotting assays that were sensitive to FV but not sensitive to FVIII whereas in purified reaction mixtures there was not a significant enhancement by FV of APC proteolysis of FVa. These data contrasting FV’s apparent APC-cofactor activities between plasma and purified reaction mixtures lead us to speculate that other factors or mechanisms present in plasma also contribute to the anticoagulant function of APC in a FV dependent manner.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2552-2558 ◽  
Author(s):  
Elisabeth Thorelli ◽  
Randal J. Kaufman ◽  
Björn Dahlbäck

Activated protein C (APC) inhibits coagulation by cleaving and inactivating procoagulant factor Va (FVa) and factor VIIIa (FVIIIa). FV, in addition to being the precursor of FVa, has anticoagulant properties; functioning in synergy with protein S as a cofactor of APC in the inhibition of the FVIIIa-factor IXa (FIXa) complex. FV:Q506 isolated from an individual homozygous for APC-resistance is less efficient as an APC-cofactor than normal FV (FV:R506). To investigate the importance of the three APC cleavage sites in FV (Arg-306, Arg-506, and Arg-679) for expression of its APC-cofactor activity, four recombinant FV mutants (FV:Q306, FV:Q306/Q506, FV:Q506, and FV:Q679) were tested. FV mutants with Gln (Q) at position 506 instead of Arg (R) were found to be poor APC-cofactors, whereas Arg to Gln mutations at positions 306 or 679 had no negative effect on the APC-cofactor activity of FV. The loss of APC-cofactor activity as a result of the Arg-506 to Gln mutation suggested that APC-cleavage at Arg-506 in FV is important for the ability of FV to function as an APC-cofactor. Using Western blotting, it was shown that both wild-type FV and mutant FV was cleaved by APC during the FVIIIa inhibition. At optimum concentrations of wild-type FV (11 nmol/L) and protein S (100 nmol/L), FVIIIa was found to be highly sensitive to APC with maximum inhibition occurring at less than 1 nmol/L APC. FV:Q506 was inactive as an APC-cofactor at APC-concentrations ≤ 1 nmol/L and only partially active at higher APC concentrations. Our results show that increased expression of FV anticoagulant activity correlates with APC-mediated cleavage at Arg-506 in FV, but not with cleavage at Arg-306 nor at Arg-679.


2012 ◽  
Vol 107 (01) ◽  
pp. 15-21 ◽  
Author(s):  
Thomas J. Cramer ◽  
Andrew J. Gale

SummaryAlmost two decades ago an anticoagulant function of factor V (FV) was discovered, as an anticoagulant cofactor for activated protein C (APC). A natural mutant of FV in which the R506 inactivation site was mutated to Gln (FVLeiden) was inactivated slower by APC, but also could not function as anticoagulant cofactor for APC in the inactivation of activated factor VIII (FVIIIa). This mutation is prevalent in populations of Caucasian descent, and increases the chance of thrombotic events in carriers. Characterisation of the FV anticoagulant effect has elucidated multiple properties of the anticoagulant function of FV: 1) Cleavage of FV at position 506 by APC is required for anticoagulant function. 2) The C-terminal part of the FV B domain is required and the B domain must have an intact connection with the A3 domain of FV. 3) FV must be bound to a negatively charged phospholipid membrane. 4) Protein S also needs to be present. 5) FV acts as a cofactor for inactivation of both FVa and FVIIIa. 6) The prothrombotic function of FVLeiden is a function of both reduced APC cofactor activity and resistance of FVa to APC inactivation. However, detailed structural and mechanistic properties remain to be further explored.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2684-2684
Author(s):  
Masahiro Takeyama ◽  
Keiji Nogami ◽  
Tetsuhiro Soeda ◽  
Akira Yoshioka ◽  
Midori Shima

Abstract Protein S functions as a cofactor of activated protein C that inactivates factor VIII(a) and factor V(a). We recently have reported a new regulatory mechanism that protein S interacted with both the A2 and A3 domains in factor VIII, and consequently this cofactor directly impaired the factor Xase complex by competing the interaction of factor IXa to factor VIIIa (Blood2006; 108, 487a). Since factor IXa blocked the binding of A2 subunit to protein S, we attempted several approaches to localize the protein S-interactive site(s) on the factor VIII A2 domain. An anti-A2 monoclonal antibody (mAb413) with the 484–509 epitope, recognizing a factor IXa-interactive site on the A2, inhibited the A2 binding to immobilized protein S up to approximately 90% in a dose-dependent manner in a surface plasmon resonance-based assay. Furthermore, ELISA-based assay showed that a synthetic peptide corresponding to residues 484–509 directly bound to protein S dose-dependently. Covalent cross-linking was observed between the 484–509 peptide and protein S following reaction with EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) using SDS-PAGE. The cross-linked product formed with EDC was consistent with 1:1 stoichiometry of reactants, suggesting specificity in the 484–509 peptide and protein S interaction. This cross-linking formation was blocked by the addition of the 484–497 peptide, whilst not by the 498–509 peptide, supporting the presence of protein S-interactive site within residues 484–497. Furthermore, N-terminal sequence analysis of the 484–509 peptide-protein S product showed that three sequential basic residues (S488, R489 and R490) could not be detected, supporting that three residues participate in cross-link formation. To confirm the significance of these residues in A2 domain for protein S-binding, the mutant forms of the A2 domain, converted to alanine, were expressed in baculovirus system and purified. Compared with wild type A2 (Kd: ∼9 nM), each binding affinity of S488A, R489A, or R490A A2 mutant for protein S was decreased by 4∼5-fold (32, 40 and 40 nM, respectively). These results indicate that the 484–509 region in the factor VIII A2 domain, and in particular a cluster of basic amino acids at residues 488–490, contributes to a unique protein S-interactive site.


Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4878-4885 ◽  
Author(s):  
Helena M. Andersson ◽  
Márcia J. Arantes ◽  
James T. B. Crawley ◽  
Brenda M. Luken ◽  
Sinh Tran ◽  
...  

Abstract Protein S has an established role in the protein C anticoagulant pathway, where it enhances the factor Va (FVa) and factor VIIIa (FVIIIa) inactivating property of activated protein C (APC). Despite its physiological role and clinical importance, the molecular basis of its action is not fully understood. To clarify the mechanism of the protein S interaction with APC, we have constructed and expressed a library of composite or point variants of human protein S, with residue substitutions introduced into the Gla, thrombin-sensitive region (TSR), epidermal growth factor 1 (EGF1), and EGF2 domains. Cofactor activity for APC was evaluated by calibrated automated thrombography (CAT) using protein S–deficient plasma. Of 27 variants tested initially, only one, protein S D95A (within the EGF1 domain), was largely devoid of functional APC cofactor activity. Protein S D95A was, however, γ-carboxylated and bound phospholipids with an apparent dissociation constant (Kdapp) similar to that of wild-type (WT) protein S. In a purified assay using FVa R506Q/R679Q, purified protein S D95A was shown to have greatly reduced ability to enhance APC-induced cleavage of FVa Arg306. It is concluded that residue Asp95 within EGF1 is critical for APC cofactor function of protein S and could define a principal functional interaction site for APC.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2552-2558 ◽  
Author(s):  
Elisabeth Thorelli ◽  
Randal J. Kaufman ◽  
Björn Dahlbäck

Abstract Activated protein C (APC) inhibits coagulation by cleaving and inactivating procoagulant factor Va (FVa) and factor VIIIa (FVIIIa). FV, in addition to being the precursor of FVa, has anticoagulant properties; functioning in synergy with protein S as a cofactor of APC in the inhibition of the FVIIIa-factor IXa (FIXa) complex. FV:Q506 isolated from an individual homozygous for APC-resistance is less efficient as an APC-cofactor than normal FV (FV:R506). To investigate the importance of the three APC cleavage sites in FV (Arg-306, Arg-506, and Arg-679) for expression of its APC-cofactor activity, four recombinant FV mutants (FV:Q306, FV:Q306/Q506, FV:Q506, and FV:Q679) were tested. FV mutants with Gln (Q) at position 506 instead of Arg (R) were found to be poor APC-cofactors, whereas Arg to Gln mutations at positions 306 or 679 had no negative effect on the APC-cofactor activity of FV. The loss of APC-cofactor activity as a result of the Arg-506 to Gln mutation suggested that APC-cleavage at Arg-506 in FV is important for the ability of FV to function as an APC-cofactor. Using Western blotting, it was shown that both wild-type FV and mutant FV was cleaved by APC during the FVIIIa inhibition. At optimum concentrations of wild-type FV (11 nmol/L) and protein S (100 nmol/L), FVIIIa was found to be highly sensitive to APC with maximum inhibition occurring at less than 1 nmol/L APC. FV:Q506 was inactive as an APC-cofactor at APC-concentrations ≤ 1 nmol/L and only partially active at higher APC concentrations. Our results show that increased expression of FV anticoagulant activity correlates with APC-mediated cleavage at Arg-506 in FV, but not with cleavage at Arg-306 nor at Arg-679.


Sign in / Sign up

Export Citation Format

Share Document