Electrophilic Amination with Anthranils through Thioamide-Assisted Cobalt(III)-Catalyzed C(sp3)–H Activation

Synthesis ◽  
2020 ◽  
Vol 52 (24) ◽  
pp. 3881-3890
Author(s):  
Jie Li ◽  
Lei Liu ◽  
Zhao Zhang ◽  
Yucheng Wang ◽  
Yan Zhang

Cobalt(III)-catalyzed electrophilic amination of inert C(sp3)–H bonds of weakly coordinating thioamides with readily accessible anthranil derivatives was accomplished under mild conditions, with good functional group tolerance, thus providing various amino aldehydes and amino ketones. Moreover, our protocol with the versatile [Cp*Co(MeCN)3][SbF6]2 features excellent atom-economy and oxidant-free conditions, and allows facile late-stage functionalization.

Synlett ◽  
2018 ◽  
Vol 30 (03) ◽  
pp. 252-256 ◽  
Author(s):  
Jian Lang ◽  
Ye Wei

The exploration of synthetic methods involving the formation of new chemical bonds at both the nitrogen and carbons atoms of the isocyano group would largely enrich the structural diversity of compounds. Herein, we disclosed a silver-catalyzed difunctionalization of the isocyano group with cyclic oximes. This method can generate a great array of structurally novel and interesting pyrimidinediones and features excellent atom economy, good functional group compatibility, and amenability to late-stage modifications.


Synthesis ◽  
2017 ◽  
Vol 49 (18) ◽  
pp. 4303-4308 ◽  
Author(s):  
Dong Li ◽  
Chuancheng Zhang ◽  
Qiang Yue ◽  
Zhen Xiao ◽  
Xianglan Wang ◽  
...  

An efficient protocol for the synthesis of O-aroyl-N,N-dimethylhydroxylamines, which are important electrophilic amination reagents, is described. The reaction between carboxylic acids and N,N-dimethylformamide is mediated by hypervalent iodine and occurs under mild conditions at room temperature to give the desired products in good yields. The process shows good functional group compatibility and air and moisture tolerance.


Synlett ◽  
2019 ◽  
Vol 30 (19) ◽  
pp. 2181-2184 ◽  
Author(s):  
Jingnan Zhao ◽  
Fan Yang ◽  
Zongyi Yu ◽  
Xiaofei Tang ◽  
Yufeng Wu ◽  
...  

A copper(I) iodine catalyzed sulfenylation of 1,3-dicarbonyl substrates in the presence of MeCN is presented. Various β-keto esters and β-keto amide substrates can react with disulfides to afford their corresponding products in good to excellent yields. The notable features of this protocol include high atom economy, easy operation, mild reaction conditions, and excellent functional group tolerance.


2021 ◽  
Author(s):  
Ya-Xuan Zhang ◽  
Kang-Jie Bian ◽  
Ruoxing Jin ◽  
Chi Yang ◽  
Xi-Sheng Wang

An efficient copper-catalyzed 1,2-difunction of alkenes with commercially available BrCH2Cl as a chloromethylating source, in which mild conditions, high reactivity, excellent functional-group tolerance, and late-stage modification of bioactive molecule have...


2019 ◽  
Vol 97 (2) ◽  
pp. 67-85 ◽  
Author(s):  
Alejandra Dominguez-Huerta ◽  
Xi-Jie Dai ◽  
Feng Zhou ◽  
Pierre Querard ◽  
Zihang Qiu ◽  
...  

Chemistry has always had as a target the conversion of molecules into valuable materials. Nevertheless, the aim of past synthesis has primarily focused on achieving a given transformation, regardless of the environmental impact of the synthetic route. Given the current global situation, the demand for sustainable alternatives has substantially increased. Our group focuses on developing selective chemical transformations that benefit from mild conditions, improved atom economy, and that can make use of renewable feedstocks as starting materials. This account summarizes our work over the past two decades specifically regarding the selective removal, conversion, and addition of functional groups that can, later on, be applied at a late stage for the modification of complex molecules.


2019 ◽  
Vol 17 (13) ◽  
pp. 3343-3347
Author(s):  
Yuxiang Zhou ◽  
Chenglong Li ◽  
Xiaoyan Yuan ◽  
Feiyan Zhang ◽  
Xiaozu Liu ◽  
...  

An efficient cobalt-catalyzed C2α selective C(sp3)–H acyloxylation of 2-substituted indoles with tert-butyl peresters to synthesize diverse 2α-acyloxylated indole derivatives is described. This developed method exhibits mild conditions, low-cost catalyst, and high functional group compatibility. The effectiveness of this chemistry is illuminated by a late-stage modification of methylated indomethacin.


Synlett ◽  
2021 ◽  
Author(s):  
Xianqing Wu ◽  
Mohini Shrestha ◽  
Yifeng Chen

AbstractChiral-auxiliary-mediated synthesis represents the most frequently used synthetic tool for the induction of chirality on α-position of γ-lactams in organic synthesis. However, the general strategy requires the stoichiometric use of chiral reagents with multiple manipulation steps. Transition-metal-catalyzed asymmetric alkene dicarbofunctionalization using readily available substrates under mild conditions allows the simultaneous construction of two vicinal chemical bonds and a chiral carbon center, hence, gain expedient access to chiral heterocycles. Herein, we disclose a Ni-catalyzed enantioselective reaction of 3-butenyl carbamoyl chloride and primary alkyl iodide enabled by a newly designed chiral 8-quinoline imidazoline ligand (8-Quinim). This protocol features broad functional group tolerance and high enantioselectivities, achieving unprecedented synthesis of chiral nonaromatic heterocycles via catalytic reductive protocol.1 Introduction2 Development of 8-Quinim Ligand3 Nickel/8-Quinim-Catalyzed Enantioselective Synthesis of Chiral α-Alkylated γ-Lactam4 Conclusion and Outlook


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shi Cao ◽  
Wei Hong ◽  
Ziqi Ye ◽  
Lei Gong

AbstractThe direct and selective C(sp3)-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp3)-H precursor, a SO2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds.


2021 ◽  
Vol 19 (35) ◽  
pp. 7701-7705
Author(s):  
Chuanliu Yin ◽  
Tianshuo Zhong ◽  
Xiangyun Zheng ◽  
Lianghao Li ◽  
Jian Zhou ◽  
...  

An Rh(iii)-catalyzed annulation of phthalazinones and various allenes was developed, leading to the formation of indazole derivatives. This catalytic system exhibits excellent functional group tolerance and atom economy.


Author(s):  
Weixiang Wang ◽  
Tianqi Liu ◽  
Chang-Hua Ding ◽  
Bin Xu

Isocyanide is well known for its multi-component reactions (MCR), such as Passerini reaction and Ugi reaction, with diverse molecular skeletons, high functional group compatibility, and good atom economy. With the...


Sign in / Sign up

Export Citation Format

Share Document