Aryl-Decarboxylation Reactions Catalyzed by Palladium: Scope and Mechanism

Synthesis ◽  
2019 ◽  
Vol 52 (03) ◽  
pp. 365-377 ◽  
Author(s):  
Ryan A. Daley ◽  
Joseph J. Topczewski

Palladium-catalyzed cross-couplings and related reactions have enabled many transformations essential to the synthesis of pharmaceuticals, agrochemicals, and organic materials. A related family of reactions that have received less attention are decarboxylative functionalization reactions. These reactions replace the preformed organometallic precursor (e.g., boronic acid or organostannane) with inexpensive and readily available carboxylic acids for many palladium-catalyzed reactions. This review focuses on catalyzed reactions where the elementary decarboxylation step is thought to occur at a palladium center. This review does not include decarboxylative reactions where decarboxylation is thought to be facilitated by a second metal (copper or silver) and is specifically limited to (hetero)arenecarboxylic acids. This review includes a discussion of oxidative Heck reactions, protodecarboxylation reactions, and cross-coupling reactions among others.1 Introduction2 Oxidative Heck Reactions3 Protodecarboxylation Reactions4 Cross-Coupling Reactions5 Other Reactions6 Conclusion

Synlett ◽  
2018 ◽  
Vol 29 (17) ◽  
pp. 2293-2297 ◽  
Author(s):  
Allan Watson ◽  
Kirsty Wilson ◽  
Jane Murray ◽  
Helen Sneddon ◽  
Craig Jamieson

Palladium-catalyzed bond-forming reactions, such as the ­Suzuki–Miyaura and Mizoroki–Heck reactions, are some of the most broadly utilized reactions within the chemical industry. These reactions frequently employ hazardous solvents; however, to adhere to increasing sustainability pressures and restrictions regarding the use of such solvents, alternatives are highly sought after. Here we demonstrate the utility of dimethyl isosorbide (DMI) as a bio-derived solvent in several benchmark Pd-catalyzed reactions: Suzuki–Miyaura (13 examples, 62–100% yield), Mizoroki–Heck (13 examples, 47–91% yield), and Sonogashira (12 examples, 65–98% yield).


2020 ◽  
Vol 17 (5) ◽  
pp. 559-569
Author(s):  
Ingrid Caroline Vaaland ◽  
Magne Olav Sydnes

Combining palladium catalyzed reactions in one-pot reactions represents an efficient and economical use of catalyst. The Suzuki-Miyaura cross-coupling has been proven to be a reaction which can be combined with other palladium catalyzed reactions in the same pot. This mini-review will highlight some of the latest examples where Suzuki-Miyaura cross-coupling reactions have been combined with other palladium catalyzed reactions in one-pot reaction. Predominantly, examples with homogeneous reaction conditions will be discussed in addition to a few examples from the authors where Pd/C have been used as a catalyst.


ChemInform ◽  
2012 ◽  
Vol 43 (50) ◽  
pp. no-no
Author(s):  
Apeng Liang ◽  
Xinjian Li ◽  
Dongfeng Liu ◽  
Jingya Li ◽  
Dapeng Zou ◽  
...  

2012 ◽  
Vol 48 (66) ◽  
pp. 8273 ◽  
Author(s):  
Apeng Liang ◽  
Xinjian Li ◽  
Dongfeng Liu ◽  
Jingya Li ◽  
Dapeng Zou ◽  
...  

2017 ◽  
Vol 89 (10) ◽  
pp. 1413-1428 ◽  
Author(s):  
Irina P. Beletskaya ◽  
Alexei D. Averin

AbstractA mini-review covers the latest achievements in the field of metal-mediated cross-coupling reactions among which are palladium-catalyzed Heck, Suzuki, cyanation and amination reactions. The aspects of the application of Pd nanoparticles (PdNPs) are discussed. The possibilities of the applications of Cu(I)-catalyzed reactions are described. Special emphasis is made on the synthesis of polymacrocyclic compounds like porphyrin dyads and triads, polyazacryptands bearing fluorophore groups using catalytic methods. The application of Pd-catalyzed CH-activation reactions for porphyrin modifications is described, the use of Lewis acids catalysis and organocatalysis for enantioselective C–C bond formation is considered with the emphasis on the application of immobilized organocatalyst.


Synthesis ◽  
1998 ◽  
Vol 1998 (06) ◽  
pp. 847-850 ◽  
Author(s):  
Lydie Allain ◽  
Jean-Pierre Bégué ◽  
Danièle Bonnet-Delpon ◽  
Denis Bouvet

2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


Sign in / Sign up

Export Citation Format

Share Document