Consecutive Palladium Catalyzed Reactions in One-Pot Reactions

2020 ◽  
Vol 17 (5) ◽  
pp. 559-569
Author(s):  
Ingrid Caroline Vaaland ◽  
Magne Olav Sydnes

Combining palladium catalyzed reactions in one-pot reactions represents an efficient and economical use of catalyst. The Suzuki-Miyaura cross-coupling has been proven to be a reaction which can be combined with other palladium catalyzed reactions in the same pot. This mini-review will highlight some of the latest examples where Suzuki-Miyaura cross-coupling reactions have been combined with other palladium catalyzed reactions in one-pot reaction. Predominantly, examples with homogeneous reaction conditions will be discussed in addition to a few examples from the authors where Pd/C have been used as a catalyst.

Synthesis ◽  
2020 ◽  
Vol 52 (16) ◽  
pp. 2387-2394 ◽  
Author(s):  
Jorge A. Cabezas ◽  
Natasha Ferllini

A regiospecific palladium-catalyzed cross-coupling reaction using the operational equivalent of the dianion 1,3-dilithiopropyne, with aromatic iodides is reported. This reaction gives high yields of 1-propyn-1-yl-benzenes and 2-(propyn-1-yl)thiophenes in the presence of catalytic amounts of palladium(0) or (II) and stoichiometric amounts of copper iodide. No terminal alkyne or allene isomers were detected. Reaction conditions were very mild and several functional groups were tolerated.


Synthesis ◽  
2018 ◽  
Vol 50 (17) ◽  
pp. 3307-3321 ◽  
Author(s):  
Jorge Cabezas ◽  
Rebeca Poveda ◽  
José Brenes

Sequential treatment of 2,3-dichloropropene with magnesium and n-BuLi generates the operational equivalent of 1,3-dilithiopropyne, which upon treatment with aldehydes or ketones, produces the corresponding alkoxy lithium acetylide intermediates. Reaction of this alkoxide with tosyl chloride, and t-BuLi produces 1-substituted, or 1,1-disubstituted 1,3-enynes in a one-pot reaction. When this lithium acetylide intermediates, obtained by this procedure, were used to perform palladium-catalyzed cross-coupling reactions, followed by addition of thionyl chloride and pyridine, 1,4-disubstituted or 1,1,4-trisubstituted 1,3-enynes were obtained in a one-pot protocol.


2011 ◽  
Vol 66 (8) ◽  
pp. 833-836
Author(s):  
Zhiping Che ◽  
Hui Xu

An efficient one-pot synthesis of dibenzofurans, via SNAr reaction of aryl halides and ortho-bromophenols in the presence of anhydrous K2CO3 and subsequent ligand-free palladium-catalyzed intramolecular aryl-aryl cross-coupling cyclization under microwave irradiation, is described.


Synlett ◽  
2018 ◽  
Vol 29 (17) ◽  
pp. 2293-2297 ◽  
Author(s):  
Allan Watson ◽  
Kirsty Wilson ◽  
Jane Murray ◽  
Helen Sneddon ◽  
Craig Jamieson

Palladium-catalyzed bond-forming reactions, such as the ­Suzuki–Miyaura and Mizoroki–Heck reactions, are some of the most broadly utilized reactions within the chemical industry. These reactions frequently employ hazardous solvents; however, to adhere to increasing sustainability pressures and restrictions regarding the use of such solvents, alternatives are highly sought after. Here we demonstrate the utility of dimethyl isosorbide (DMI) as a bio-derived solvent in several benchmark Pd-catalyzed reactions: Suzuki–Miyaura (13 examples, 62–100% yield), Mizoroki–Heck (13 examples, 47–91% yield), and Sonogashira (12 examples, 65–98% yield).


Synthesis ◽  
2020 ◽  
Vol 53 (02) ◽  
pp. 383-390 ◽  
Author(s):  
Yiyuan Peng ◽  
Xinglin Ye ◽  
Jian Huang ◽  
Zhihong Deng ◽  
Jianjun Yuan

In this paper, exploration of our continuous interests on late-stage derivation of quinozaline core is described. A wide array of 4-(1H-indol-1-yl)quinazolines were obtained in good to excellent yields through palladium-catalyzed cross-coupling of 4-tosyloxyquinazolines with indole derivatives under mild reaction conditions.


2016 ◽  
Vol 14 (27) ◽  
pp. 6487-6496 ◽  
Author(s):  
Abhinandan K. Danodia ◽  
Rakesh K. Saunthwal ◽  
Monika Patel ◽  
Rakesh K. Tiwari ◽  
Akhilesh K. Verma

The present methodology allows the conversion of easily available aryl/heteroaryl 1,2-dihalides into synthetically useful unsymmetrically substituted arenes/heteroarenes in good to excellent yields under mild reaction conditions.


2017 ◽  
Vol 89 (10) ◽  
pp. 1413-1428 ◽  
Author(s):  
Irina P. Beletskaya ◽  
Alexei D. Averin

AbstractA mini-review covers the latest achievements in the field of metal-mediated cross-coupling reactions among which are palladium-catalyzed Heck, Suzuki, cyanation and amination reactions. The aspects of the application of Pd nanoparticles (PdNPs) are discussed. The possibilities of the applications of Cu(I)-catalyzed reactions are described. Special emphasis is made on the synthesis of polymacrocyclic compounds like porphyrin dyads and triads, polyazacryptands bearing fluorophore groups using catalytic methods. The application of Pd-catalyzed CH-activation reactions for porphyrin modifications is described, the use of Lewis acids catalysis and organocatalysis for enantioselective C–C bond formation is considered with the emphasis on the application of immobilized organocatalyst.


Synthesis ◽  
2019 ◽  
Vol 52 (03) ◽  
pp. 365-377 ◽  
Author(s):  
Ryan A. Daley ◽  
Joseph J. Topczewski

Palladium-catalyzed cross-couplings and related reactions have enabled many transformations essential to the synthesis of pharmaceuticals, agrochemicals, and organic materials. A related family of reactions that have received less attention are decarboxylative functionalization reactions. These reactions replace the preformed organometallic precursor (e.g., boronic acid or organostannane) with inexpensive and readily available carboxylic acids for many palladium-catalyzed reactions. This review focuses on catalyzed reactions where the elementary decarboxylation step is thought to occur at a palladium center. This review does not include decarboxylative reactions where decarboxylation is thought to be facilitated by a second metal (copper or silver) and is specifically limited to (hetero)arenecarboxylic acids. This review includes a discussion of oxidative Heck reactions, protodecarboxylation reactions, and cross-coupling reactions among others.1 Introduction2 Oxidative Heck Reactions3 Protodecarboxylation Reactions4 Cross-Coupling Reactions5 Other Reactions6 Conclusion


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 4 ◽  
Author(s):  
Kifah S. M. Salih ◽  
Younis Baqi

Cross-coupling reactions furnishing carbon–carbon (C–C) bond is one of the most challenging tasks in organic syntheses. The early developed reaction protocols by Negishi, Heck, Kumada, Sonogashira, Stille, Suzuki, and Hiyama, utilizing palladium or its salts as catalysis have, for decades, attracted and inspired researchers affiliated with academia and industry. Tremendous efforts have been paid to develop and achieve more sustainable reaction conditions, such as the reduction in energy consumption by applying the microwave irradiation technique. Chemical reactions under controlled microwave conditions dramatically reduce the reaction time and therefore resulting in increase in the yield of the desired product by minimizing the formation of side products. In this review, we mainly focus on the recent advances and applications of palladium catalyzed cross-coupling carbon–carbon bond formation under microwave technology.


Sign in / Sign up

Export Citation Format

Share Document