Free-Hand Pedicle Screw Insertion of Thoracic Spine Using Fennell Technique: Initial Results and Review of Literature

2019 ◽  
Vol 16 (01) ◽  
pp. 10-13
Author(s):  
Ayusman Satapathy ◽  
Chinmaya Dash ◽  
Arunav Sharma ◽  
Rabi Narayan Sahu

Abstract Aim of the Study This article aims to study the safety and feasibility of Fennell technique of free-hand pedicle screw insertion in thoracic spine. Methods Consecutive 10 patients in whom 40 thoracic pedicle screw were inserted using Fennell’s technique were included in the study. Postoperative computed tomography scan was done in all the patients. Breach in individual pedicle was analyzed using Gertzbein classification. Results A total of 40 screws were placed in the thoracic spine in 10 patients by free-hand technique described by Fennell et al. Out of 40 pedicle screws, 26 were placed at the D10 to D12 level, 8 screws were placed at the D7 to D9 level, and 6 screws were placed at the D1 to D6 level. There was one pedicle with grade 1 lateral breach and one pedicle with grade 1 medial breach as per Gertzbein classification. All other screws were contained within the pedicle (Gertzbein grade 0). None of the patients had any added deficits or wound complications in the postoperative period. Conclusion Thoracic pedicle screw insertion is challenging in nature because of the anatomic variability and proximity of critical structures to the pedicles. Our experience suggests that Fennell technique is a reliable technique, which can be used to place thoracic pedicles consistently, with acceptable rates of pedicle breach. A study involving larger number of patients might prove to establish this technique as an easily reproducible and safe technique for free-hand pedicle screw insertion in thoracic spine.

2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


2005 ◽  
Vol 12 (2) ◽  
pp. 123
Author(s):  
Young Joon Ahn ◽  
Choon Sung Lee ◽  
Ji Hyo Kim ◽  
Kyeong Il Jeong ◽  
Yung Tae Kim

2021 ◽  
Author(s):  
Vishal Kumar ◽  
Vishnu Baburaj ◽  
Prasoon Kumar ◽  
Sarvdeep Singh Dhatt

AbstractBackgroundPedicle screw insertion is routinely carried out in spine surgery that has traditionally been performed under fluoroscopy guidance. Robotic guidance has recently gained popularity in order to improve the accuracy of screw placement. However, it is unclear whether the use of robotics alters the accuracy of screw placement or clinical outcomes.ObjectivesThis systematic review aims to compare the results of pedicle screws inserted under fluoroscopy guidance, with those inserted under robotic guidance, in terms of both short-term radiographic outcomes, as well as long-term clinical outcomes.MethodsThis systematic review will be conducted according to the PRISMA guidelines. A literature search will be conducted on the electronic databases of PubMed, Embase, Scopus, and Ovid with a pre-determined search strategy. A manual bibliography search of included studies will also be done. Original articles in English that directly compare pedicle screw insertion under robotic guidance to those inserted under fluoroscopy guidance will be included. Data on outcomes will be extracted from included studies and analysis carried out with the help of appropriate software.


Spine ◽  
2006 ◽  
Vol 31 (22) ◽  
pp. E840-E846 ◽  
Author(s):  
Hwan T. Hee ◽  
Mohammad Shazad Khan ◽  
James C. Goh ◽  
Hee K. Wong

Author(s):  
Laura E. Buckenmeyer ◽  
Kristophe J. Karami ◽  
Ata M. Kiapour ◽  
Vijay K. Goel ◽  
Constantine K. Demetropoulos ◽  
...  

Osteoporosis is a critical challenge in orthopedic surgery. Osteoporotic patients have an increased risk of loosening and failure of implant constructs due to a weaker bone-implant interface than with healthy bone. Pullout strength of pedicle screws is enhanced by increased screw insertion depth. However, more knowledge is needed to define optimal pedicle screw insertion depth in relation to screw-bone interface biomechanics and the resulting loosening risk. This study evaluates the effects of screw length on loosening risk in the osteoporotic lumbar spine.


2022 ◽  
Vol 52 (1) ◽  
pp. E8

OBJECTIVE Pedicle screw insertion for stabilization after lumbar fusion surgery is commonly performed by spine surgeons. With the advent of navigation technology, the accuracy of pedicle screw insertion has increased. Robotic guidance has revolutionized the placement of pedicle screws with 2 distinct radiographic registration methods, the scan-and-plan method and CT-to-fluoroscopy method. In this study, the authors aimed to compare the accuracy and safety of these methods. METHODS A retrospective chart review was conducted at 2 centers to obtain operative data for consecutive patients who underwent robot-assisted lumbar pedicle screw placement. The newest robotic platform (Mazor X Robotic System) was used in all cases. One center used the scan-and-plan registration method, and the other used CT-to-fluoroscopy for registration. Screw accuracy was determined by applying the Gertzbein-Robbins scale. Fluoroscopic exposure times were collected from radiology reports. RESULTS Overall, 268 patients underwent pedicle screw insertion, 126 patients with scan-and-plan registration and 142 with CT-to-fluoroscopy registration. In the scan-and-plan cohort, 450 screws were inserted across 266 spinal levels (mean 1.7 ± 1.1 screws/level), with 446 (99.1%) screws classified as Gertzbein-Robbins grade A (within the pedicle) and 4 (0.9%) as grade B (< 2-mm deviation). In the CT-to-fluoroscopy cohort, 574 screws were inserted across 280 lumbar spinal levels (mean 2.05 ± 1.7 screws/ level), with 563 (98.1%) grade A screws and 11 (1.9%) grade B (p = 0.17). The scan-and-plan cohort had nonsignificantly less fluoroscopic exposure per screw than the CT-to-fluoroscopy cohort (12 ± 13 seconds vs 11.1 ± 7 seconds, p = 0.3). CONCLUSIONS Both scan-and-plan registration and CT-to-fluoroscopy registration methods were safe, accurate, and had similar fluoroscopy time exposure overall.


Author(s):  
Omer Faruk Kilicaslan ◽  
Mehmet Ali Tokgoz ◽  
Sevket Butun ◽  
Vugar Nabi ◽  
Serdar Akalin

Sign in / Sign up

Export Citation Format

Share Document