Artificial Intelligence Algorithm Detecting Lung Infection in Supine Chest Radiographs with a Diagnostic Accuracy Similar to Board-Certified Radiologists

2020 ◽  
Author(s):  
J Rückel ◽  
W Kunz ◽  
B Hoppe ◽  
M Patzig ◽  
M Notohamiprodjo ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bin Wang ◽  
Yuanyuan Zhang ◽  
Chunyan Wu ◽  
Fen Wang

The purpose of this study is to explore the application value of artificial intelligence algorithm in multimodal MRI image diagnosis of cervical cancer. Based on the traditional convolutional neural network (CNN), an artificial intelligence 3D-CNN algorithm is designed according to the characteristics of cervical cancer. 70 patients with cervical cancer were selected as the experimental group, and 10 healthy people were selected as the reference group. The 3D-CNN algorithm was applied to the diagnosis of clinical cervical cancer multimodal MRI images. The value of the algorithm was comprehensively evaluated by the image quality and diagnostic accuracy. The results showed that compared with the traditional CNN algorithm, the convergence rate of the loss curve of the artificial intelligence 3D-CNN algorithm was accelerated, and the segmentation accuracy of whole-area tumors (WT), core tumor areas (CT), and enhanced tumor areas (ET) was significantly improved. In addition, the clarity of the multimodal MRI image and the recognition performance of the lesion were significantly improved. Under the artificial intelligence 3D-CNN algorithm, the Dice values of WT, ET, and CT regions were 0.78, 0.71, and 0.64, respectively. The sensitivity values were 0.92, 0.91, and 0.88, respectively. The specificity values were 0.93, 0.92, and 0.9 l, respectively. The Hausdorff (Haus) distances were 0.93, 0.92, and 0.90, respectively. The data of various indicators were significantly better than those of the traditional CNN algorithm ( P  < 0.05). In addition, the diagnostic accuracy of the artificial intelligence 3D-CNN algorithm was 93.11 ± 4.65%, which was also significantly higher than that of the traditional CNN algorithm (82.45 ± 7.54%) ( P  < 0.05). In summary, the recognition and segmentation ability of multimodal MRI images based on artificial intelligence 3D-CNN algorithm for cervical cancer lesions were significantly improved, which can significantly enhance the clinical diagnosis rate of cervical cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lin Wu ◽  
Donghui Wei ◽  
Ning Yang ◽  
Hong Lei ◽  
Yun Wang

This research was to explore the accuracy of ultrasonic diagnosis based on artificial intelligence algorithm in the diagnosis of pregnancy complicated with brain tumors. In this study, 18 patients with pregnancy complicated with brain tumor confirmed by pathology were selected as the research object. Ultrasound contrast based on artificial bee colony algorithm was performed and diagnosed by experienced clinicians. Ultrasonic image will be reconstructed by artificial bee colony algorithm to improve its image display ability. The pathological diagnosis will be handed over to the physiological pathology laboratory of the hospital for diagnosis. The doctor’s ultrasonic diagnosis results were compared with the pathological diagnosis stage results of patients, and the results were analyzed by statistical analysis to evaluate its diagnostic value. The comparison results showed that the number and classification of benign tumors were the same, while in malignant tumors, the number diagnosis was the same, but there was one patient with diagnostic error in classification. One case of mixed glial neuron tumor was diagnosed as glial neuron tumor, and the diagnostic accuracy was 94.44% and the K value was 0.988. The diagnostic results of the two were in excellent agreement. The results show that, in the ultrasonic image diagnosis of patients with brain tumors during pregnancy based on artificial intelligence algorithm, most of them are benign and have obvious symptoms. Ultrasound has a good diagnostic accuracy and can be popularized in clinical diagnosis. The results can provide experimental data for the clinical application of ultrasonic image feature analysis based on artificial intelligence as the diagnosis of pregnancy complicated with brain tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Meisam Babanezhad ◽  
Afrasyab Khan ◽  
Azam Marjani

AbstractThe heat transfer improvements by simultaneous usage of the nanofluids and metallic porous foams are still an attractive research area. The Computational fluid dynamics (CFD) methods are widely used for thermal and hydrodynamic investigations of the nanofluids flow inside the porous media. Almost all studies dedicated to the accurate prediction of the CFD approach. However, there are not sufficient investigations on the CFD approach optimization. The mesh increment in the CFD approach is one of the challenging concepts especially in turbulent flows and complex geometries. This study, for the first time, introduces a type of artificial intelligence algorithm (AIA) as a supplementary tool for helping the CFD. According to the idea of this study, the CFD simulation is done for a case with low mesh density. The artificial intelligence algorithm uses learns the CFD driven data. After the intelligence achievement, the AIA could predict the fluid parameters for the infinite number of nodes or dense mesh without any limitations. So, there is no need to solve the CFD models for further nodes. This study is specifically focused on the genetic algorithm-based fuzzy inference system (GAFIS) to predict the velocity profile of the water-based copper nanofluid turbulent flow in a porous tube. The most intelligent GAFIS could perform the most accurate prediction of the velocity. Hence, the intelligence of GAFIS is tested for different values of cluster influence range (CIR), squash factor(SF), accept ratio (AR) and reject ratio (RR), the population size (PS), and the percentage of crossover (PC). The maximum coefficient of determination (~ 0.97) was related to the PS of 30, the AR of 0.6, the PC of 0.4, CIR of 0.15, the SF 1.15, and the RR of 0.05. The GAFIS prediction of the fluid velocity was in great agreement with the CFD. In the most intelligent condition, the velocity profile predicted by GAFIS was similar to the CFD. The nodes increment from 537 to 7671 was made by the GAFIS. The new predictions of the GAFIS covered all CFD results.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 14
Author(s):  
Mei Dong ◽  
Hongyu Wu ◽  
Hui Hu ◽  
Rafig Azzam ◽  
Liang Zhang ◽  
...  

With increased urbanization, accidents related to slope instability are frequently encountered in construction sites. The deformation and failure mechanism of a landslide is a complex dynamic process, which seriously threatens people’s lives and property. Currently, prediction and early warning of a landslide can be effectively performed by using Internet of Things (IoT) technology to monitor the landslide deformation in real time and an artificial intelligence algorithm to predict the deformation trend. However, if a slope failure occurs during the construction period, the builders and decision-makers find it challenging to effectively apply IoT technology to monitor the emergency and assist in proposing treatment measures. Moreover, for projects during operation (e.g., a motorway in a mountainous area), no recognized artificial intelligence algorithm exists that can forecast the deformation of steep slopes using the huge data obtained from monitoring devices. In this context, this paper introduces a real-time wireless monitoring system with multiple sensors for retrieving high-frequency overall data that can describe the deformation feature of steep slopes. The system was installed in the Qili connecting line of a motorway in Zhejiang Province, China, to provide a technical support for the design and implementation of safety solutions for the steep slopes. Most of the devices were retained to monitor the slopes even after construction. The machine learning Probabilistic Forecasting with Autoregressive Recurrent Networks (DeepAR) model based on time series and probabilistic forecasting was introduced into the project to predict the slope displacement. The predictive accuracy of the DeepAR model was verified by the mean absolute error, the root mean square error and the goodness of fit. This study demonstrates that the presented monitoring system and the introduced predictive model had good safety control ability during construction and good prediction accuracy during operation. The proposed approach will be helpful to assess the safety of excavated slopes before constructing new infrastructures.


Sign in / Sign up

Export Citation Format

Share Document