Synthesis and Functions of Oligomeric and Multidentate Dipyrrin Derivatives and their Complexes

Synlett ◽  
2020 ◽  
Vol 31 (17) ◽  
pp. 1663-1680 ◽  
Author(s):  
Tatsuya Nabeshima ◽  
Yusuke Chiba ◽  
Takashi Nakamura ◽  
Ryota Matsuoka

The dipyrrin–metal complexes and especially the boron complex 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) have recently attracted considerable attention because of their interesting properties and possible applications. We have developed two unique and useful ways to extend versatility and usefulness of the dipyrrin complexes. The first one is the linear and macrocyclic oligomerization of the BODIPY units. These arrangements of the B–F moieties of the oligomerized BODIPY units provide sophisticated functions, such as unique recognition ability toward cationic guest, associated with changes in the photophysical properties by utilizing unprecedented interactions between the B–F and a cationic species. The second one is introduction of additional ligating moieties into the dipyrrin skeleton. The multidentate N2Ox dipyrrin ligands thus obtained form a variety of complexes with 13 and 14 group elements, which are difficult to synthesize using the original N2 dipyrrin derivatives. Interestingly, these unique complexes exhibit novel structures, properties, and functions such as guest recognition, stimuli-responsive structural conversion, switching of the optical properties, excellent stability of the neutral radicals, etc. We believe that these multifunctional dipyrrin complexes will advance the basic chemistry of the dipyrrin complexes and develop their applications in the materials and medicinal chemistry fields.1 Introduction2 Linear Oligomers of Boron–Dipyrrin Complexes3 Cyclic Oligomers of Boron–Dipyrrin Complexes4 A Cyclic Oligomer of Zinc–Dipyrrin Complexes5 Group 13 Element Complexes of N2Ox Dipyrrins6 Chiral N2 and N2Ox Dipyrrin Complexes7 Group 14 Element Complexes of N2O2 Dipyrrins8 Other N2O2 Dipyrrin Complexes with Unique Properties and Functions9 Conclusion

ACS Omega ◽  
2020 ◽  
Vol 5 (33) ◽  
pp. 21271-21287
Author(s):  
Huynh Thi Phuong Loan ◽  
Thanh Q. Bui ◽  
Tran Thi Ai My ◽  
Nguyen Thi Thanh Hai ◽  
Duong Tuan Quang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-24 ◽  
Author(s):  
Carmen Cretu ◽  
Loredana Maiuolo ◽  
Domenico Lombardo ◽  
Elisabeta I. Szerb ◽  
Pietro Calandra

The involvement of metal ions within the self-assembly spontaneously occurring in surfactant-based systems gives additional and interesting features. The electronic states of the metal, together with the bonds that can be established with the organic amphiphilic counterpart, are the factors triggering new photophysical properties. Moreover, the availability of stimuli-responsive supramolecular amphiphile assemblies, able to disassemble in a back-process, provides reversible switching particularly useful in novel approaches and applications giving rise to truly smart materials. In particular, small amphiphiles with an inner distribution, within their molecular architecture, of various polar and apolar functional groups, can give a wide variety of interactions and therefore enriched self-assemblies. If it is joined with the opportune presence and localization of noble metals, whose chemical and photophysical properties are undiscussed, then very interesting materials can be obtained. In this minireview, the basic concepts on self-assembly of small amphiphilic molecules with noble metals are shown with particular reference to the photophysical properties aiming at furnishing to the reader a panoramic view of these exciting problematics. In this respect, the following will be shown: (i) the principles of self-assembly of amphiphiles that involve noble metals, (ii) examples of amphiphiles and amphiphile-noble metal systems as representatives of systems with enhanced photophysical properties, and (iii) final comments and perspectives with some examples of modern applications.


2011 ◽  
Vol 696 ◽  
pp. 45-50
Author(s):  
Yoshitaka Nishiyama ◽  
Koji Moriguchi ◽  
Nobuo Otsuka

Laboratory metal dusting test of several Ni binary alloys containing the representative element was conducted in a simulated syngas atmosphere at 650°C for 100h. The Ni alloys containing element belonging to Group 14 and 15 in the periodic series exhibited excellent metal dusting resistance, while those containing Group 13 did not. This behavior was able to be reasonably interpreted from the Blyholder mechanism and the concept of Pauling’s electronegativity.


2020 ◽  
Vol 56 (55) ◽  
pp. 7633-7636 ◽  
Author(s):  
Laxmi Raman Adil ◽  
Parameswar Krishnan Iyer

A simple design strategy to convert ACQ materials into bright AIE luminogens is demonstrated. Unique differences in photophysical properties were observed among them which gave rise to stimuli responsive behaviour and sensor for chemical warfare agents.


2011 ◽  
Vol 36 (5) ◽  
pp. 603-637 ◽  
Author(s):  
Cheng-Liang Liu ◽  
Chia-Hung Lin ◽  
Chi-Ching Kuo ◽  
Sung-Tso Lin ◽  
Wen-Chang Chen

2019 ◽  
Vol 48 (35) ◽  
pp. 13169-13175 ◽  
Author(s):  
Akinobu Sumiyoshi ◽  
Yusuke Chiba ◽  
Ryota Matsuoka ◽  
Takumu Noda ◽  
Tatsuya Nabeshima

Heavy group 13 element complexes of N2O2- and N2O4-type dipyrrins exhibited efficient luminescent properties and cation recognition ability.


1999 ◽  
Vol 38 (10) ◽  
pp. 2464-2472 ◽  
Author(s):  
Justin Ferman ◽  
Joseph P. Kakareka ◽  
Wim T. Klooster ◽  
Jerome L. Mullin ◽  
Joseph Quattrucci ◽  
...  

2020 ◽  
Vol 213 ◽  
pp. 02025
Author(s):  
Wei Liu ◽  
Xuefeng Liu ◽  
Jiabao Ren ◽  
Chen Cui ◽  
Shujie Xu

Magnetically responsive colloidal photonic crystals can change their structural color according to the external magnetic field, which has been widely studied in recent years. However, due to lack of recognition ability towards non-magnetic analytes, these photonic crystals can be applied to constructing a sensor only when an additional stimuli responsive unit is involved. To address this problem, we used a functional protein to modify the magnetically responsive colloidal particles to construct chemically/magnetically dualresponsive nanoparticles. For a proof of concept research in this manuscript, we modified the colloidal particles with streptavidin, and the as obtained nanoparticles were used to detect biotinylated protein via a binding and assembling strategy, which is impossible for conventional photonic crystal sensors. Not only qualitative and quantitative detections were achieved, but also the average diameters of the biotinylated protein were correctly estimated. These results have demonstrated a multipurpose detection feature of our proposed colorimetric sensor.


Sign in / Sign up

Export Citation Format

Share Document