A Novel SETBP1 Gene Disruption by a De Novo Balanced Translocation in a Patient with Speech Impairment, Intellectual, and Behavioral Disorder

Author(s):  
Ivona Vrkić Boban ◽  
Futoshi Sekiguchi ◽  
Mirela Lozić ◽  
Noriko Miyake ◽  
Naomichi Matsumoto ◽  
...  

AbstractBalanced chromosomal abnormalities (BCAs) can disrupt gene function resulting in disease. To date, BCA disrupting the SET binding protein 1 (SETBP1) gene has not been reported. On the other hand, de novo heterozygous variants in the highly conserved 11-bp region in SETBP1 can result in the Schinzel–Giedion syndrome. This condition is characterized by severe intellectual disability, a characteristic face, and multiple-system anomalies. Further other types of mutations involving SETBP1 are associated with a different phenotype, mental retardation, autosomal dominant 29 (MRD29), which has mild dysmorphic features, developmental delay, and behavioral disorders. Here we report a male patient who has moderate intellectual disability, mild behavioral difficulties, and severe expressive speech impairment resulting from a de novo balanced chromosome translocation, t(12;18)(q22;q12.3). By whole genome sequencing, we determined the breakpoints at the nucleotide level. The 18q12.3 breakpoint was located between exons 2 and 3 of SETBP1. Phenotypic features of our patient are compatible with those with MRD29. This is the first reported BCA disrupting SETBP1.

Author(s):  
Evan Jiang ◽  
Mark P. Fitzgerald ◽  
Katherine L. Helbig ◽  
Ethan M. Goldberg

AbstractInterleukin-1 receptor accessory protein-like 1 (IL1RAPL1) encodes a protein that is highly expressed in neurons and has been shown to regulate neurite outgrowth as well as synapse formation and synaptic transmission. Clinically, mutations in or deletions of IL1RAPL1 have been associated with a spectrum of neurological dysfunction including autism spectrum disorder and nonsyndromic X-linked developmental delay/intellectual disability of varying severity. Nearly all reported cases are in males; in the few reported cases involving females, the clinical presentation was mild or the deletion was identified in phenotypically normal carriers in accordance with X-linked inheritance. Using genome-wide microarray analysis, we identified a novel de novo 373 kb interstitial deletion of the X chromosome (Xp21.1-p21.2) that includes exons 4 to 6 of the IL1RAPL1 gene in an 8-year-old girl with severe intellectual disability and behavioral disorder with a history of developmental regression. Overnight continuous video electroencephalography revealed electrical status epilepticus in sleep (ESES). This case expands the clinical genetic spectrum of IL1RAPL1-related neurodevelopmental disorders and highlights a new genetic association of ESES.


2015 ◽  
Vol 145 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Devin M. Cox ◽  
Merlin G. Butler

We report a 36-year-old Caucasian male identified with distal partial trisomy 15q and partial monosomy 16p from an unbalanced chromosome translocation detected by microarray and FISH analysis. He had a history of developmental delay and intellectual disability, chronic anemia, tall and slender stature, thoracic scoliosis and lumbar lordosis, and dysmorphic features. The distal partial trisomy 15q included the insulin-like growth factor 1 receptor gene involved with growth, while genes in the distal partial monosomy 16p region are involved with alpha hemoglobin production, intellectual disability, dysmorphic features, and acromegaly. The chromosome derivative found in our patient contains genes known to play a role in his phenotype.


2019 ◽  
Vol 159 (3) ◽  
pp. 130-136
Author(s):  
Maha S. Zaki ◽  
Ola M. Eid ◽  
Maha M. Eid ◽  
Amal M. Mohamed ◽  
Inas S.M. Sayed ◽  
...  

We report on a female patient who presented with severe intellectual disability and autistic behavior, dysmorphic features, orodental anomalies, and bilateral calcification of basal ganglia. Using a high-density oligonucleotide microarray, we have identified a de novo duplication of 11q13.1q22.1 involving the dosage sensitive genes FGF3 and FGF4, genes related to autosomal dominant disorders KMT5B, GAL, SPTBN2, and LRP5, susceptibility loci SCZD2, SLEH1, and SHANK2, mitochondrial genes NDUFV1, NDUFS8, and TMEM126B, and many loss of function genes, including PHOX2A, CLPB, MED17, B3GNT1, LIPT2, and CLPB. However, the duplication did not involve Ribonuclease H2, subunit C (RNASEH2C) which is considered to be located in the critical region for Aicardi-Goutières syndrome. In combination with the duplication at 11q13.1, a 1.849-Mb heterozygous duplication at 4q35.2 was also identified. Although this duplicated region does not contain causative genes related to brain calcification, the duplication at 4q35 was reported previously in a patient with basal ganglia calcification, coats' like retinopathy, and glomerulosclerosis. Our patient's presentation and genomic findings indicate that duplication of 4q35.2 could be a novel genetic cause of calcification of basal ganglia. Our report also underscores the clinical significance of rearrangements in 11q13.1q22.1 in the pathogenesis of basal ganglia calcification.


PLoS Genetics ◽  
2014 ◽  
Vol 10 (10) ◽  
pp. e1004772 ◽  
Author(s):  
Fadi F. Hamdan ◽  
Myriam Srour ◽  
Jose-Mario Capo-Chichi ◽  
Hussein Daoud ◽  
Christina Nassif ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ke Wu ◽  
Yan Cong

Abstract Background Bainbridge-Ropers syndrome (BRPS) [OMIM#615485] is a neurodevelopmental disorder, characterized by delayed psychomotor development with generalized hypotonia, moderate to severe intellectual disability, poor or absent speech, feeding difficulties, growth failure, dysmorphic craniofacial features and minor skeletal features. The aim of this study was to investigate the genetic etiology of a Sudanese boy with severe developmental delay, intellectual disability, and craniofacial phenotype using trio-based whole-exome sequencing. To our knowledge, no patients with ASXL3 gene variant c.3043C>T have been reported detailedly in literature. Case presentation The patient (male, 3 years 6 months) was the first born of a healthy non-consanguineous couple originating from Sudan, treated for “psychomotor retardation” for more than 8 months in Yiwu. The patient exhibited severely delayed milestones in physiological and intellectual developmental stages, language impairment, poor eye-contact, lack of subtle motions of fingers, fear of claustrophobic space, hypotonia, clinodactyly, autistic features. Peripheral blood samples were collected from the patient and his parents. Trio-based whole-exome sequencing(Trio-WES) identified a de novo heterozygous ASXL3 gene variant c.3043C>T;p.Q1015X. Sanger sequencing verified variants of this family. Conclusion Trio-WES analysis identified a de novo nonsense variant (c.3043C>T) of ASXL3 gene in a Sudanese boy. To our knowledge, the patient with this variant has not been reported previously in literature. This study presents a new case for ASXL3 gene variants, which expanded the mutational and phenotypic spectrum.


2017 ◽  
Vol 60 (9) ◽  
pp. 494-498 ◽  
Author(s):  
Katja Kloth ◽  
Jonas Denecke ◽  
Maja Hempel ◽  
Jessika Johannsen ◽  
Tim M. Strom ◽  
...  

2017 ◽  
Vol 101 (6) ◽  
pp. 995-1005 ◽  
Author(s):  
Elizabeth E. Palmer ◽  
Raman Kumar ◽  
Christopher T. Gordon ◽  
Marie Shaw ◽  
Laurence Hubert ◽  
...  

2017 ◽  
Vol 3 (6) ◽  
pp. e206 ◽  
Author(s):  
Carla Marini ◽  
Michele Romoli ◽  
Elena Parrini ◽  
Cinzia Costa ◽  
Davide Mei ◽  
...  

Objective:To describe electroclinical features and outcome of 6 patients harboring KCNB1 mutations.Methods:Clinical, EEG, neuropsychological, and brain MRI data analysis. Targeted next-generation sequencing of a 95 epilepsy gene panel.Results:The mean age at seizure onset was 11 months. The mean follow-up of 11.3 years documented that 4 patients following an infantile phase of frequent seizures became seizure free; the mean age at seizure offset was 4.25 years. Epilepsy phenotypes comprised West syndrome in 2 patients, infantile-onset unspecified generalized epilepsy, myoclonic and photosensitive eyelid myoclonia epilepsy resembling Jeavons syndrome, Lennox-Gastaut syndrome, and focal epilepsy with prolonged occipital or clonic seizures in each and every one. Five patients had developmental delay prior to seizure onset evolving into severe intellectual disability with absent speech and autistic traits in one and stereotypic hand movements with impulse control disorder in another. The patient with Jeavons syndrome evolved into moderate intellectual disability. Mutations were de novo, 4 missense and 2 nonsense, 5 were novel, and 1 resulted from somatic mosaicism.Conclusions:KCNB1-related manifestations include a spectrum of infantile-onset generalized or focal seizures whose combination leads to early infantile epileptic encephalopathy including West, Lennox-Gastaut, and Jeavons syndromes. Long-term follow-up highlights that following a stormy phase, seizures subside or cease and treatment may be eased or withdrawn. Cognitive and motor functions are almost always delayed prior to seizure onset and evolve into severe, persistent impairment. Thus, KCNB1 mutations are associated with diffuse brain dysfunction combining seizures, motor, and cognitive impairment.


2021 ◽  
pp. 1-5
Author(s):  
Ayberk Turkyilmaz ◽  
Erdal Kurnaz ◽  
Atilla Cayir

Intellectual disability (ID) is characterized by limited or insufficient development of mental abilities, including intellectual functioning impairments, such as learning and understanding cause-effect relationships. Some cases have ID as the only finding and are called isolated cases. Conversely, cases accompanied by facial dysmorphism, microcephaly, autism spectrum disorder, epilepsy, obesity, and congenital anomalies are called syndromic developmental delay (DD)/ID. Isolated and syndromic DD/ID cases show extreme genetic heterogeneity. Genetic etiology can be detected in approximately 40% of the cases, whereas chromosomal abnormalities are observed in 25%. Obesity is a multifactorial disease in which both genetic and environmental factors play important roles. The role of heredity in obesity has been reported to be between 40 and 70%. Array-based comparative genomic hybridization (array-CGH) can detect CNVs in the whole genome at a higher resolution than conventional cytogenetic methods. Array-CGH is currently recommended as the first-tier genetic test for ID cases worldwide. In the present study, we aimed to evaluate clinical, radiological, and genetic analyses of a 12-year and 4-month-old girl with microcephaly, ID, and obesity. In the array-CGH analysis, a 3.1-Mb deletion, arr[GRGh37] 10q23.31g23.33 (92745793_95937944)×1 was detected, and this alteration was evaluated to be pathogenic. We consider that haploinsufficiency of the candidate genes (<i>GPR120</i>, <i>KIF11</i>, <i>EXOC6</i>, <i>CYP26A1</i>, <i>CYP26C1</i>, and <i>LGI1</i>) in the deletion region may explain microcephaly, ID, obesity, seizures, and ophthalmological findings in our patient. The investigation of 10q23.31q23.33 microdeletion in cases with syndromic obesity may contribute to molecular genetic diagnosis.


Sign in / Sign up

Export Citation Format

Share Document