Hydrogen–Deuterium Exchange Mass Spectrometry Identifies Activated Factor IX-Induced molecular Changes in Activated Factor VIII

Author(s):  
Josse van Galen ◽  
Nadia Freato ◽  
Małgorzata A. Przeradzka ◽  
Eduard H.T.M. Ebberink ◽  
Mariëtte Boon-Spijker ◽  
...  

AbstractHydrogen–deuterium exchange mass spectrometry (HDX-MS) was employed to gain insight into the changes in factor VIII (FVIII) that occur upon its activation and assembly with activated factor IX (FIXa) on phospholipid membranes. HDX-MS analysis of thrombin-activated FVIII (FVIIIa) revealed a marked increase in deuterium incorporation of amino acid residues along the A1–A2 and A2–A3 interface. Rapid dissociation of the A2 domain from FVIIIa can explain this observation. In the presence of FIXa, enhanced deuterium incorporation at the interface of FVIIIa was similar to that of FVIII. This is compatible with the previous finding that FIXa contributes to A2 domain retention in FVIIIa. A2 domain region Leu631-Tyr637, which is not part of the interface between the A domains, also showed a marked increase in deuterium incorporation in FVIIIa compared with FVIII. Deuterium uptake of this region was decreased in the presence of FIXa beyond that observed in FVIII. This implies that FIXa alters the conformation or directly interacts with this region in FVIIIa. Replacement of Val634 in FVIII by alanine using site-directed mutagenesis almost completely impaired the ability of the activated cofactor to enhance the activity of FIXa. Surface plasmon resonance analysis revealed that the rates of A2 domain dissociation from FVIIIa and FVIIIa-Val634Ala were indistinguishable. HDX-MS analysis showed, however, that FIXa was unable to retain the A2 domain in FVIIIa-Val634Ala. The combined results of this study suggest that the local structure of Leu631-Tyr637 is altered by FIXa and that this region contributes to the cofactor function of FVIII.

Blood ◽  
2020 ◽  
Vol 136 (23) ◽  
pp. 2703-2714
Author(s):  
Nadia Freato ◽  
Eduard H. T. M. Ebberink ◽  
Josse van Galen ◽  
Caroline Fribourg ◽  
Mariëtte Boon-Spijker ◽  
...  

Abstract The assembly of the enzyme-activated factor IX (FIXa) with its cofactor, activated factor VIII (FVIIIa) is a crucial event in the coagulation cascade. The absence or dysfunction of either enzyme or cofactor severely compromises hemostasis and causes hemophilia. FIXa is a notoriously inefficient enzyme that needs FVIIIa to drive its hemostatic potential, by a mechanism that has remained largely elusive to date. In this study, we employed hydrogen–deuterium exchange-mass spectrometry (HDX-MS) to investigate how FIXa responds to assembly with FVIIIa in the presence of phospholipids. This revealed a complex pattern of changes that partially overlaps with those changes that occur upon occupation of the substrate-binding site by an active site-directed inhibitor. Among the changes driven by both cofactor and substrate, HDX-MS highlighted several surface loops that have been implicated in allosteric networks in related coagulation enzymes. Inspection of FVIIIa-specific changes indicated that 3 helices are involved in FIXa–FVIIIa assembly. These are part of a basic interface that is also known as exosite II. Mutagenesis of basic residues herein, followed by functional studies, identified this interface as an extended FVIIIa-interactive patch. HDX-MS was also applied to recombinant FIXa variants that are associated with severe hemophilia B. This revealed that single amino acid substitutions can silence the extended network of FVIIIa-driven allosteric changes. We conclude that HDX-MS has the potential to visualize the functional impact of disease-associated mutations on enzyme–cofactor complexes in the hemostatic system.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 286
Author(s):  
Oliver Ozohanics ◽  
Attila Ambrus

Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) is a rapidly evolving technique for analyzing structural features and dynamic properties of proteins. It may stand alone or serve as a complementary method to cryo-electron-microscopy (EM) or other structural biology approaches. HDX-MS is capable of providing information on individual proteins as well as large protein complexes. Owing to recent methodological advancements and improving availability of instrumentation, HDX-MS is becoming a routine technique for some applications. When dealing with samples of low to medium complexity and sizes of less than 150 kDa, conformation and ligand interaction analyses by HDX-MS are already almost routine applications. This is also well supported by the rapid evolution of the computational (software) background that facilitates the analysis of the obtained experimental data. HDX-MS can cope at times with analytes that are difficult to tackle by any other approach. Large complexes like viral capsids as well as disordered proteins can also be analyzed by this method. HDX-MS has recently become an established tool in the drug discovery process and biopharmaceutical development, as it is now also capable of dissecting post-translational modifications and membrane proteins. This mini review provides the reader with an introduction to the technique and a brief overview of the most common applications. Furthermore, the most challenging likely applications, the analyses of glycosylated and membrane proteins, are also highlighted.


Author(s):  
Jeffrey W. Hudgens

This tutorial provides mechanical drawings, electrical schematics, parts lists, stereolithography (STL) files for producing three-dimensional (3D)-printed parts, initial graphics exchange specification (IGS) files for automated machining, and instructions necessary for construction of a dual protease column, subzero, liquid chromatography system for hydrogen-deuterium exchange mass spectrometry (HDX-MS). Electro-mechanical schematics for construction of two multi-zone temperature controllers that regulate to ±0.05 oC are also included in this tutorial.


2018 ◽  
Author(s):  
Rosie Upton ◽  
Lukasz G. Migas ◽  
Kamila J. Pacholarz ◽  
Richard G. Beniston ◽  
David Firth ◽  
...  

<p>To consider the measurable variations in biopharmaceuticals we use mass spectrometry and systematically evaluate three lots of Herceptin®, two mAb standards and an intact Fc-hinge fragment. Each mAb is examined in three states; glycan intact, truncated (following endoS2 treatment) and fully deglycosylated. Despite equivalence at the protein level, each lot of Herceptin® gives a distinctive signature in three different mass spectrometry analyses. Ion mobility mass spectrometry (IM-MS) shows that in the API, the attached N-glycans reduce the conformational spread of each mAb by 10.5 – 25 %. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) data supports this, with lower global deuterium uptake in solution when comparing intact to the fully deglycosylated protein. HDX-MS and activated IM-MS map the influence of glycans on the mAb and reveal allosteric effects which extend far beyond the Fc domains into the Fab region. Taken together these findings, and the supplied interactive data sets could be used to provide acceptance criteria with application for MS based characterisation of biosimilars and novel therapeutic mAbs. </p>


2020 ◽  
Author(s):  
Julie Ducharme ◽  
Christopher J. Thibodeaux ◽  
Karine Auclair

AbstractWe report herein a novel approach to study allostery which combines the use of carefully selected bioconjugates and hydrogen-deuterium exchange mass spectrometry (HDX-MS). The utility of our method is demonstrated using human cytochrome P450 3A4 (CYP3A4). CYP3A4 is arguably the most important drug-metabolizing enzyme, and as such, is involved in numerous drug interactions. Diverse allosteric ligand effects have been reported for this enzyme, yet the structural mechanism of these phenomena remain poorly understood. We have described different CYP3A4-effector bioconjugates, some of which mimic the allosteric effect of positive effectors on CYP3A4, while others show activity enhancement even though the label does not occupy the allosteric pocket (agonistic), or do not show activation while still blocking the allosteric site (antagonistic). These bioonjugates were studied here by HDX-MS, which enabled us to better define the position of the allosteric site, and to identify important regions involved in CYP3A4 activation.


Sign in / Sign up

Export Citation Format

Share Document