Polymorphisms in the microtubuli associated protein tau and Alzheimer’s disease

2004 ◽  
Vol 36 (05) ◽  
Author(s):  
L Weller ◽  
F Faltraco ◽  
E Heimberg ◽  
S Teipel ◽  
B Bondy ◽  
...  
Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1233-1242
Author(s):  
Joshua M Shulman ◽  
Mel B Feany

Abstract In Alzheimer's disease and related disorders, the microtubule-associated protein Tau is abnormally hyperphosphorylated and aggregated into neurofibrillary tangles. Mutations in the tau gene cause familial frontotemporal dementia. To investigate the molecular mechanisms responsible for Tau-induced neurodegeneration, we conducted a genetic modifier screen in a Drosophila model of tauopathy. Kinases and phosphatases comprised the major class of modifiers recovered, and several candidate Tau kinases were similarly shown to enhance Tau toxicity in vivo. Despite some clinical and pathological similarities among neurodegenerative disorders, a direct comparison of modifiers between different Drosophila disease models revealed that the genetic pathways controlling Tau and polyglutamine toxicity are largely distinct. Our results demonstrate that kinases and phosphatases control Tau-induced neurodegeneration and have important implications for the development of therapies in Alzheimer's disease and related disorders.


2000 ◽  
Vol 2 (2) ◽  
pp. 101-110 ◽  

Alzheimer's disease (AD) is a disorder of two pathologies- plaques and tangles. The former have as a key constituent amyloid protein and the latter the microtubule-associaied protein tau. Genetics has demonstrated that changes in either protein are sufficient to cause dementia. The amyloid cascade hypothesis proposes that plaque-related changes precede tangle-related changes and positions amyloid as central to the degeneration of AD. All the evidence suggests this is correct, including evidence that presenil ins alter the processing of the amyloid precursor protein and evidence that disrupting the normal properties of tau underlies the related froniotemporal dementias. The amyloid cascade hypothesis has provided the basis for nearly a decade of intensive basic science - the skeleton of that hypothesis can now be fleshed out, and confidence is growing that this will result in useful disease-modifying therapies in the future.


2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Ricardo Apatiga‐Perez ◽  
Fidel De la Cruz ◽  
Linda Garcés‐Ramírez ◽  
Mario Hernandes‐Alejandro ◽  
Miguel Ángel Ontiveros‐Torres ◽  
...  

2020 ◽  
Vol 295 (50) ◽  
pp. 17138-17147
Author(s):  
Toshiya Oba ◽  
Taro Saito ◽  
Akiko Asada ◽  
Sawako Shimizu ◽  
Koichi M. Iijima ◽  
...  

Accumulation of the microtubule-associated protein tau is associated with Alzheimer's disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser-262 and Ser-356 plays critical roles in tau accumulation and toxicity. Microtubule affinity–regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317D, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser-262/356–dependent and –independent mechanisms. Using transgenic Drosophila expressing human MARK4 (MARK4wt) or a mutant version of MARK4 (MARK4ΔG316E317D), we found that coexpression of MARK4wt and MARK4ΔG316E317D increased total tau levels and enhanced tau-induced neurodegeneration and that MARK4ΔG316E317D had more potent effects than MARK4wt. Interestingly, the in vitro kinase activities of MARK4wt and MARK4ΔG316E317D were similar. When tau phosphorylation at Ser-262 and Ser-356 was blocked by alanine substitutions, MARK4wt did not promote tau accumulation or exacerbate neurodegeneration, whereas coexpression of MARK4ΔG316E317D did. Both MARK4wt and MARK4ΔG316E317D increased the levels of oligomeric forms of tau; however, only MARK4ΔG316E317D further increased the detergent insolubility of tau in vivo. Together, these findings suggest that MARK4ΔG316E317D increases tau levels and exacerbates tau toxicity via a novel gain-of-function mechanism and that modification in this region of MARK4 may affect disease pathogenesis.


FEBS Letters ◽  
2007 ◽  
Vol 581 (30) ◽  
pp. 5872-5878 ◽  
Author(s):  
Jozef Sevcik ◽  
Rostislav Skrabana ◽  
Radovan Dvorsky ◽  
Natalia Csokova ◽  
Khalid Iqbal ◽  
...  

Biochemistry ◽  
2013 ◽  
Vol 52 (37) ◽  
pp. 6445-6455 ◽  
Author(s):  
Hamid Y. Qureshi ◽  
Tong Li ◽  
Ryen MacDonald ◽  
Chul Min Cho ◽  
Nicole Leclerc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document