Conditional control of human wild-type and Parkinson's disease-associated mutant alpha-synuclein in transgenic mouse brain

2004 ◽  
Vol 31 (S 1) ◽  
Author(s):  
S Nuber ◽  
T Schmidt ◽  
D Berg ◽  
M Neumann ◽  
C Holzmann ◽  
...  
2000 ◽  
Vol 20 (17) ◽  
pp. 6365-6373 ◽  
Author(s):  
Philipp J. Kahle ◽  
Manuela Neumann ◽  
Laurence Ozmen ◽  
Veronika Müller ◽  
Helmut Jacobsen ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Guilherme A. P. de Oliveira ◽  
Jerson L. Silva

Abstract Amyloid formation is a process involving interconverting protein species and results in toxic oligomers and fibrils. Aggregated alpha-synuclein (αS) participates in neurodegenerative maladies, but a closer understanding of the early αS polymerization stages and polymorphism of heritable αS variants is sparse still. Here, we distinguished αS oligomer and protofibril interconversions in Thioflavin T polymerization reactions. The results support a hypothesis reconciling the nucleation-polymerization and nucleation-conversion-polymerization models to explain the dissimilar behaviors of wild-type and the A53T mutant. Cryo-electron microscopy with a direct detector shows the polymorphic nature of αS fibrils formed by heritable A30P, E46K, and A53T point mutations. By showing that A53T rapidly nucleates competent species, continuously elongates fibrils in the presence of increasing amounts of seeds, and overcomes wild-type surface requirements for growth, our findings place A53T with features that may explain the early onset of familial Parkinson’s disease cases bearing this mutation.


2009 ◽  
Vol 15 ◽  
pp. S8
Author(s):  
M.-F. Chesselet ◽  
S. Fleming ◽  
F. Richter ◽  
C. Frias ◽  
F. Mortazavi ◽  
...  

2012 ◽  
Vol 51 (1) ◽  
pp. 39
Author(s):  
Labrador-Garrido Adahir ◽  
Lopez-Enriquez Soledad ◽  
Pozo David ◽  
Roodveldt Cintia

2019 ◽  
Author(s):  
LM Butkovich ◽  
MC Houser ◽  
T Chalermpalanupap ◽  
KA Porter-Stransky ◽  
AF Iannitelli ◽  
...  

AbstractDegeneration of locus coeruleus (LC) neurons and dysregulation of noradrenergic signaling are ubiquitous features of Parkinson’s disease (PD). The LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects these neurons remains unclear. LC-derived norepinephrine (NE) can stimulate neuroprotective mechanisms and modulate immune cells, while dysregulation of NE neurotransmission may exacerbate disease progression, particularly non-motor symptoms, and contribute to the chronic neuroinflammation associated with PD pathology. Although transgenic mice overexpressing asyn have previously been developed, transgene expression is usually driven by pan-neuronal promoters and thus has not been selectively targeted to LC neurons. Here we report a novel transgenic mouse expressing human wild-type asyn under control of the noradrenergic-specific dopamine β-hydroxylase promoter. These mice developed oligomeric and conformation-specific asyn in LC neurons, alterations in hippocampal and LC microglial abundance, upregulated GFAP expression, degeneration of LC fibers, decreased striatal dopamine (DA) metabolism, and age-dependent behaviors reminiscent of non-motor symptoms of PD that were rescued by adrenergic receptor antagonists. These mice provide novel insights into how asyn pathology affects LC neurons and how central noradrenergic dysfunction may contribute to early PD pathophysiology.Significance statementα-synuclein (asyn) pathology and loss of neurons in the locus coeruleus (LC) are two of the most ubiquitous neuropathologic features of Parkinson’s disease (PD). Dysregulated NE neurotransmission is associated with the non-motor symptoms of PD including sleep disturbances, emotional changes such as anxiety and depression, and cognitive decline. Importantly, loss of central NE may contribute to the chronic inflammation in, and progression of, PD. We have generated a novel transgenic mouse expressing human asyn in LC neurons to investigate how increased asyn expression affects the function of the central noradrenergic transmission and associated behaviors. We report cytotoxic effects of oligomeric and conformation-specific asyn, astrogliosis, LC fiber degeneration, disruptions in striatal dopamine metabolism, and age-dependent alterations in non-motor behaviors without inclusions.


2017 ◽  
Author(s):  
Kathrin Hemmer ◽  
Lisa M. Smits ◽  
Silvia Bolognin ◽  
Jens C. Schwamborn

AbstractParkinson′s disease is a progressive age-associated neurological disorder. One of the major neuropathological hallmarks of Parkinson’s disease is the appearance of protein aggregates, mainly consisting of the protein alpha-Synuclein. These aggregates have been described both in genetic as well as idiopathic forms of the disease. Currently, Parkinson’s disease patient-specific induced pluripotent stem cells (iPSCs) are mainly used for in vitro disease modeling or for experimental cell replacement approaches. Here, we demonstrate that these cells can be used for in vivo disease modeling. We show that Parkinson’s disease patient-specific, iPSC-derived neurons carrying the LRRK2-G2019S mutation show an upregulation of alpha-Synuclein after transplantation in the mouse brain. However, further investigations indicate that the increased human alpha-Synuclein levels fail to induce spreading or aggregation in the mouse brain. We therefore conclude that grafting of these cells into the mouse brain is suitable for cell autonomous in vivo disease modeling but has strong limitations beyond that. Furthermore, our results support the hypothesis that there might be a species barrier between human to mouse concerning alpha-Synuclein spreading.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
S Nuber ◽  
T Schmidt ◽  
H.W Habbes ◽  
M Löbbecke-Schumacher ◽  
P Teismann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document