Acute effect of intravenous corticotropin releasing hormone on local adipose tissue metabolism in vivo

2005 ◽  
Vol 113 (08) ◽  
Author(s):  
P Wellhöner ◽  
M Welzel ◽  
C Dodt
Author(s):  
John N. Fain

AbstractThe glucocorticoid hormones alter the metabolism of the adipose tissue after an approximately 2-h lag period. The effects are mediated through the nuclear receptors that alter the expression of a wide variety of genes through the mechanisms that are similar to those seen in the other cells. There are many direct metabolic effects of the glucocorticoids on the adipose tissue metabolism, and every year, new effects are added to the list of proteins whose expression is influenced by the glucocorticoids. Furthermore, some enzymatic processes are affected by these hormones only in the presence of the other hormones such as growth hormone (GH) or insulin. Most of the effects of the glucocorticoids are on the gene transcription, and the effects on the mRNA are reflected in the altered levels of the target proteins. The glucocorticoids enhance the leptin release, while reducing that of the inflammatory adipokines and stimulating that of the lipoprotein lipase (LPL) in the presence of insulin. The activity of 11β-hydroxysteroid dehydrogenase type 1 (HSD1) is enhanced by the glucocorticoids along with that of α1 glycoprotein 1 and serum amyloid A release by the adipose tissue. In contrast, the tumor necrosis factor α (TNF)-stimulated lipolysis in the adipose tissue is blocked by the glucocorticoids. It is still unclear which, if any, of these effects account for the insulin resistance due to the glucocorticoids in the adipose tissue. However, recent work suggests that, at least in mice, the reduction in the osteocalcin release by the osteoblasts in the presence of the glucocorticoids accounts for much of the in vivo insulin resistance. In summary, there are multiple direct effects of the glucocorticoids, both anti-inflammatory and proinflammatory, on the adipose tissue.


1999 ◽  
Vol 58 (4) ◽  
pp. 877-886 ◽  
Author(s):  
Keith N. Frayn

The metabolism of white adipose tissue is regulated by many factors, including hormones and substrates delivered in the blood, the activity of the autonomic nervous system and the rate of flow of blood through the tissue. An integrated view of adipose tissue metabolism can only be gained, therefore, from studies in vivo. Of the various techniques available for studying adipose tissue metabolism in vivo, the measurement of arterio-venous differences offers some unique possibilities. In human subjects this technique has been performed mostly by catheterization of the venous drainage of the subcutaneous abdominal depot. Studies using this technique indicate that adipose tissue has an active pattern of metabolism, responding rapidly to meal ingestion by suppressing the release of non-esterified fatty acids, or to exercise with an increase in fat mobilization. Adipose tissue blood flow may also change rapidly in these situations; for instance, it increases markedly after a meal, potentially increasing the delivery of triacylglycerol to the enzyme lipoprotein lipase (EC 3.1.1.34) for hydrolysis. During exercise, there is evidence that adipose tissue blood flow does not increase sufficiently to allow delivery of all the fatty acids released into the systemic circulation. The various adipose tissue depots have their own characteristic metabolic properties, although in human subjects these are difficult to study with the arterio-venous difference technique. A combination of tracer infusion with selective catheterization allows measurements of leg, splanchnic and non-splanchnic upper-body fat mobilization and triacylglycerol clearance. Development of such techniques may open up new possibilities in the future for obtaining an integrated picture of adipose tissue function and its depot-specific variations.


Diabetes ◽  
1994 ◽  
Vol 43 (7) ◽  
pp. 866-870 ◽  
Author(s):  
T. M. van der Merwe ◽  
L. Eklund ◽  
P.-A. E. Jansson ◽  
P. N. Lonnroth

1997 ◽  
Vol 155 (2) ◽  
pp. 187-189 ◽  
Author(s):  
KN Frayn ◽  
BA Fielding ◽  
LK Summers

2001 ◽  
Vol 86 (3) ◽  
pp. 371-377 ◽  
Author(s):  
M. H. G. Gaíva ◽  
R. C. Couto ◽  
L. M. Oyama ◽  
G. E. C. Couto ◽  
V. L. F. Silveria ◽  
...  

The aim of the present study was to evaluate the effect of diets rich in n-6 and n-3 fatty acids on adipose tissue metabolism. Starting at weaning, male Wistar rats were fed ad libitum, for 8 weeks with one of the following diets: C, rat chow; S, rat chow containing 15 % (w/w) soyabean oil; F, rat chow containing 15 % (w/w) fish oil; SF, rat chow containing 15 % (w/w) soyabean and fish oil (5:1, w/w). Casein was added to the fat diets to achieve the same 20 % (w/w) protein content as in the control chow. Food intake and body weight were measured weekly. The rats were killed by decapitation and the retroperitoneal (RET) and epididymal (EPI) white adipose tissues were removed and weighed. Tissue lipid and protein content, in vivo lipogenesis rate, uptake of diet-derived lipids, in vitro lipolytic rate, adipocyte area, lipoprotein lipase, ATP citrate lyase, and malic enzyme activities were evaluated. Carcass lipid and protein contents were also measured. Energy intake was reduced while carcass lipid content was increased in the three fat-fed groups. However, carcass protein and body weight gains were elevated only with diets F and SF. Lipolysis rate was diminished by diets F and SF, while the uptake of diet-derived lipids was elevated by the diet S in both RET and EPI tissues. These metabolic alterations may have contributed to the increase in in vivo lipogenesis rate in the presence of decreased ATP citrate lyase and malic enzyme activities induced by the three lipid diets. These results indicate that enrichment of the diet with polyunsaturated fatty acids causes changes in adipose tissue metabolism that favour fat deposition. Different metabolic pathways were preferentially affected by each type of fatty acid used.


Steroids ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 543-550 ◽  
Author(s):  
Steen B Pedersen ◽  
Kurt Kristensen ◽  
Bjørn Richelsen

2000 ◽  
Vol 24 (11) ◽  
pp. 1426-1432 ◽  
Author(s):  
M Kolehmainen ◽  
JJ Ohisalo ◽  
JM Kaartinen ◽  
V Tuononen ◽  
M Pääkkönen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document