Solar Power: Using Energy from the Sun in Buildings

2007 ◽  
pp. 84-107 ◽  
Author(s):  
Susan Roaf ◽  
Rajat Gupta
Keyword(s):  
2019 ◽  
Vol 9 (6) ◽  
pp. 1131 ◽  
Author(s):  
Luis Valentín ◽  
Manuel Peña-Cruz ◽  
Daniela Moctezuma ◽  
Cesar Peña-Martínez ◽  
Carlos Pineda-Arellano ◽  
...  

Solar resource assessment is fundamental to reduce the risk in selecting the solar power-plants’ location; also for designing the appropriate solar-energy conversion technology and operating new sources of solar-power generation. Having a reliable methodology for solar irradiance forecasting allows accurately identifying variations in the plant energy production and, as a consequence, determining improvements in energy supply strategies. A new trend for solar resource assessment is based on the analysis of the sky dynamics by processing a set of images of the sky dome. In this paper, a methodology for processing the sky dome images to obtain the position of the Sun is presented; this parameter is relevant to compute the solar irradiance implemented in solar resource assessment. This methodology is based on the implementation of several techniques in order to achieve a combined, fast, and robust detection system for the Sun position regardless of the conditions of the sky, which is a complex task due to the variability of the sky dynamics. Identifying the correct position of the Sun is a critical parameter to project whether, in the presence of clouds, the occlusion of the Sun is occurring, which is essential in short-term solar resource assessment, the so-called irradiance nowcasting. The experimental results confirm that the proposed methodology performs well in the detection of the position of the Sun not only in a clear-sky day, but also in a cloudy one. The proposed methodology is also a reliable tool to cover the dynamics of the sky.


2013 ◽  
Vol 724-725 ◽  
pp. 43-51 ◽  
Author(s):  
Yu En Wu ◽  
Kuo Chan Huang

This paper presents a smart dual-axis solar tracking system, its architecture includes sensors, embedded controllers, AC motors, Integrated electric putter design biaxial institutions, and the GSM automatic report of fault notification, to achieve autonomous tracking solar track system and adjust the solar panels to reach the maximum smooth by tracking the solar azimuth angle and elevation angle, and ensure that the solar panels with the sun to maintain the vertical in any time and any place, thus achieving the best power efficiency. This system proposed a dual-axis design, and an embedded controller used as the main system controller to detect voltage difference and determine the solar azimuth angle with four groups of CDS as a sensing element. To lock the sun, the solar panels be perpendicular via the moving of AC motor (EW) and motorized faders (north-south). The control system software using C language can be extremely fast and accurate tracking of the solar angle, and dual-axis operation with recovery mode to save the power loss. Finally, we have the actual analysis and verification of benefit of power generation in this paper, from this experimental results, we can verify the integration of build dual-axis solar tracking system and solar power system have promoted 30% generating power capacity more than fixed solar power system and has low failure rate. It can improve the problem of traditional tracking system reliability and greatly enhance the usefulness of this system.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Sanghyun Lee

Photovoltaics (PV-also called solar photovoltaic devices) are used to harness the power of the sun via the electronic process that occurs within semiconductor cells. The solar energy is absorbed by the cells, which causes the electrons to break away from their atoms, allowing them to flow within the material to produce electricity. This electricity will become the renewable energy for Kentucky, as the generation of coal will but come to a stop within the near future. Like Denmark who is running on 100% renewable generation we must stride to become fully operational on solar. In the present work, we systematically studied about renewable energy resources, in particular, solar energy for the application of photovoltaic panels in Eastern Kentucky. By analyzing data from our PV cells at Morehead State University designed to follow the direction of the sun for optimized output and by incorporating MPPT charge controllers, we have constructed a maximum power algorithm that performs best for the location. Utilizing these, measurements of daily electricity production in comparison to the average power needed for household use has validated our research. With the advancements in solar cell technology what was once impossible is now reality, as solar power can easily power this region based on our data. Knowing this, being a prime location we can now push to enable the advancement of renewable energy production and become less dependent on fossil fuels, thus creating an infrastructure that will run off solar power.


2014 ◽  
Vol 699 ◽  
pp. 613-618
Author(s):  
Ahmed Gamil ◽  
Syed Ihtsham Ul Haq Gilani ◽  
Hussain Hamoud Al-Kayiem

Solar Power Tower systems have attracted the worldwide interest since the early 1980s and heliostat fields have been an area for development due to their high cost and important function. This paper presents a mathematical model to design a small heliostat field with 3 dual-axis heliostat units located in Universiti Teknologi PETRONAS, Malaysia. The model mainly relies on the sun position and tower and heliostat geometrical relations, namely, tower height and the ground distance of the concerned heliostats. The heliostat field layout is configured according to radial staggered pattern then varying the tower height and heliostat ground distance to calculate the facing and target angle of each heliostat. TRNSYS software was used to simulate the power output for the proposed heliostat field. The modeled heliostat field could deliver 10 kW for 12.4 m2reflective area for latitude 4.3̊ N. A solar power tower testing facility will be built according to the design specifications produced in this paper and TRNSYS simulation results are required to estimate the power input to the receiver system for sizing purpose in the future.


2011 ◽  
Vol 7 (1) ◽  
pp. 64-68
Author(s):  
jawad Mahmoodm ◽  
Haider Muhammed

Solar power is environment friendly power source, but is characterized by being highly dependent on the irradiation level which is function of the sun position on the sky. to overcome this ssituation and extract maximum power from the sun, th PV array must be kept nearly perpendicular to the sun during the daytime. in this paper, a smart relay based sun tracking system has been designed and implemented tp keep the PV array perpendicular to the sun during the day hours.


2015 ◽  
Vol 77 (17) ◽  
Author(s):  
Azwaan Zakariah ◽  
Mahdi Faramarzi ◽  
Jasrul Jamani Jamian ◽  
Mohd Amri Md Yunus

Nowadays, renewable energy such as solar power has become important for electricity generation, and solar power systems have been installed in homes. Furthermore, solar tracking systems are being continuously improved by researchers around the world, who focus on achieving the best design and thus maximizing the efficiency of the solar power system. In this project, a fuzzy logic controller has been integrated and implemented in a medium-scale solar tracking system to achieve the best real-time orientation of a solar PV panel toward the sun. This project utilized dual-axis solar tracking with a fuzzy logic intelligent method. The hardware system consists of an Arduino UNO microcontroller as the main controller and Light Dependent Resistor (LDR) sensors for sensing the maximum incident intensity of solar irradiance. Initially, two power window motors (one for the horizontal axis and the other for the vertical axis) coordinate and alternately rotate to scan the position of the sun. Since the sun changes its position all the time, the LDR sensors detect its position at five-minute intervals through the level of incident solar irradiance intensity measured by them. The fuzzy logic controller helps the microcontroller to give the best inference concerning the direction to which the solar PV panel should rotate and the position in which it should stay. In conclusion, the solar tracking system delivers high efficiency of output power with a low power intake while it operates.


Sign in / Sign up

Export Citation Format

Share Document