scholarly journals Techno-economic performances of future concentrating solar power plants in Australia

Author(s):  
Alberto Boretti ◽  
Stefania Castelletto

AbstractThe prediction of the techno-economic performances of future concentrated solar power (CSP) solar tower (ST) with thermal energy storage (TES) plants is challenging. Nevertheless, this information is fundamental to energy policymakers. This work aims to fill the knowledge gap regarding estimations of costs, amount, and quality of electricity produced by these plants over their lifetime. Every estimate should be based on real-world data of actual costs incurred to build and maintain constructed plants, and their actual electricity production, sampled with high frequency, to be reliable. Here we discuss as the available information is insufficient. There has been so far very limited transparency on the real cost and performance of CSP plants built and operated worldwide, and in the very few cases where data has been made public, for example, Crescent Dunes in the United States, costs have been much higher than expected, while annual average capacity factors have been much less. Important statistical parameters such as the standard deviation of the capacity factor with high-frequency sampling have never been provided. We conclude as the techno-economic performances of these plants are therefore unpredictable with accuracy until a significant number of plants will be built and operated, their costs and operating parameters will be shared, and their delivered techno-economic performances will be compared to the modeled values, finally permitting validation of the techno-economic analysis tools.

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 312
Author(s):  
Abdulaziz Alhammad ◽  
Qian (Chayn) Sun ◽  
Yaguang Tao

Many countries have set a goal for a carbon neutral future, and the adoption of solar energy as an alternative energy source to fossil fuel is one of the major measures planned. Yet not all locations are equally suitable for solar energy generation. This is due to uneven solar radiation distribution as well as various environmental factors. A number of studies in the literature have used multicriteria decision analysis (MCDA) to determine the most suitable places to build solar power plants. To the best of our knowledge, no study has addressed the subject of optimal solar plant site identification for the Al-Qassim region, although developing renewable energy in Saudi Arabia has been put on the agenda. This paper developed a spatial MCDA framework catering to the characteristics of the Al-Qassim region. The framework adopts several tools used in Geographic Information Systems (GIS), such as Random Forest (RF) raster classification and model builder. The framework aims to ascertain the ideal sites for solar power plants in the Al-Qassim region in terms of the amount of potential photovoltaic electricity production (PVOUT) that could be produced from solar energy. For that, a combination of GIS and Analytical Hierarchy Process (AHP) techniques were employed to determine five sub-criteria weights (Slope, Global Horizontal Irradiance (GHI), proximity to roads, proximity to residential areas, proximity to powerlines) before performing spatial MCDA. The result showed that ‘the most suitable’ and ‘suitable’ areas for the establishment of solar plants are in the south and southwest of the region, representing about 17.53% of the study area. The ‘unsuitable’ areas account for about 10.17% of the total study area, which is mainly concentrated in the northern part. The rest of the region is further classified into ‘moderate’ and ‘restricted’ areas, which account for 46.42% and 25.88%, respectively. The most suitable area for potential solar energy, yields approximately 1905 Kwh/Kwp in terms of PVOUT. The proposed framework also has the potential to be applied to other regions nationally and internationally. This work contributes a reproducible GIS workflow for a low-cost but accurate adoption of a solar energy plan to achieve sustainable development goals.


Energy ◽  
1990 ◽  
Vol 15 (12) ◽  
pp. 1181-1198 ◽  
Author(s):  
Frank Kreith ◽  
Paul Norton ◽  
Daryl Brown

2013 ◽  
Author(s):  
S. Ong ◽  
C. Campbell ◽  
P. Denholm ◽  
R. Margolis ◽  
G. Heath

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3131 ◽  
Author(s):  
Adarsh Vaderobli ◽  
Dev Parikh ◽  
Urmila Diwekar

Renewable energy use can mitigate the effects of climate change. Solar energy is amongst the cleanest and most readily available renewable energy sources. However, issues of cost and uncertainty associated with solar energy need to be addressed to make it a major source of energy. These uncertainties are different for different locations. In this work, we considered four different locations in the United States of America (Northeast, Northwest, Southeast, Southwest). The weather and cost uncertainties of these locations are included in the formulation, making the problem an optimization-under-uncertainty problem. We used the novel Better Optimization of Nonlinear Uncertain Systems (BONUS) algorithm to solve these problems. The performance and economic models provided by the System Advisory Model (SAM) system from NREL were used for this optimization. Since this is a black-box model, this adds difficulty for optimization and optimization under uncertainty. The objective function and constraints in stochastic optimization (stochastic programming) problems are probabilistic functionals. The generalized treatment of such problems is to use a two-loop computationally intensive procedure, with an inner loop representing probabilistic or stochastic models or scenarios instead of the deterministic model, inside the optimization loop. BONUS circumvents the inner sampling loop, thereby reducing the computational intensity significantly. BONUS can be used for black-box models. The results show that, using the BONUS algorithm, we get 41%–47% of savings on the expected value of the Levelized Cost of Electricity (LCOE) for Parabolic Trough Solar Power Plants. The expected LCOE in New York is 57.42%, in Jacksonville is 38.52%, and in San Diego is 17.57% more than in Las Vegas. This difference is due to the differences in weather and weather uncertainties at these locations.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1377
Author(s):  
Felice Rubino ◽  
Pedro Poza ◽  
Germana Pasquino ◽  
Pierpaolo Carlone

Solar power is a sustainable and affordable source of energy, and has gained interest from academies, companies, and government institutions as a potential and efficient alternative for next-generation energy production. To promote the penetration of solar power in the energy market, solar-generated electricity needs to be cost-competitive with fossil fuels and other renewables. Development of new materials for solar absorbers able to collect a higher fraction of solar radiation and work at higher temperatures, together with improved design of thermal energy storage systems and components, have been addressed as strategies for increasing the efficiency of solar power plants, offering dispatchable energy and adapting the electricity production to the curve demand. Manufacturing of concentrating solar power components greatly affects their performance and durability and, thus, the global efficiency of solar power plants. The development of viable, sustainable, and efficient manufacturing procedures and processes became key aspects within the breakthrough strategies of solar power technologies. This paper provides an outlook on the application of thermal spray processes to produce selective solar absorbing coatings in solar tower receivers and high-temperature protective barriers as strategies to mitigate the corrosion of concentrating solar power and thermal energy storage components when exposed to aggressive media during service life.


2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1613-1622
Author(s):  
Petar Mitkovic ◽  
Jelena Djekic ◽  
Mihailo Mitkovic ◽  
Milica Igic ◽  
Milena Dinic-Brankovic ◽  
...  

This paper presents some basic urban and architectural requirements regarding the installation of solar panels for electricity production on buildings. These requirements are usually design ? aesthetic and functional ? constructive. However, from the thermal ambient aspect, constructor?s solution is often not in accordance with requirements of architectural and urban planning profession. It is a known fact that thermal environment impacts the yield in the solar panels production. The aim of this paper is to show, based on experience of solar power plant DOMIT, city of Leskovac, Serbia, what is the expected effect in that aspect, in order to choose the optimal solution with regard to the character of the building. The most favorable production have solar power plants built on buildings where the panels on the underside are completely open because they have the best ventilation, and therefore cooling.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8491
Author(s):  
Uladzimir Bahach ◽  
Anton Brin ◽  
Yuri Vankov ◽  
Konstantin Verchak ◽  
Olga Afanaseva ◽  
...  

This paper discusses the resource, technical, and economic potential of using solar photovoltaic (PV) systems in Belarus and Tatarstan. The considered countries are characterized by poor actinometric conditions and relatively low tariffs for traditional energy resources. At the same time, Belarus is experienced with solar power due to different incentive mechanisms that have been used over the past decade. Moreover, the cost of building solar power plants in Belarus in 2013–2017 was lower than the world average. The cost of electricity production is analyzed depending on the geographical location of sites and the type of owners of solar power plants (i.e., households, businesses and industrial enterprises, electricity producers). Using the data on the cost of photovoltaic systems as presented by IRENA and considering actinometric data for Belarus and Tatarstan, a long-term forecast of PV electricity cost is made. The moments of the break-even points and payback periods are defined for Belarus and Tatarstan.


Sign in / Sign up

Export Citation Format

Share Document