scholarly journals Prospects for Solar Energy Development in Belarus and Tatarstan

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8491
Author(s):  
Uladzimir Bahach ◽  
Anton Brin ◽  
Yuri Vankov ◽  
Konstantin Verchak ◽  
Olga Afanaseva ◽  
...  

This paper discusses the resource, technical, and economic potential of using solar photovoltaic (PV) systems in Belarus and Tatarstan. The considered countries are characterized by poor actinometric conditions and relatively low tariffs for traditional energy resources. At the same time, Belarus is experienced with solar power due to different incentive mechanisms that have been used over the past decade. Moreover, the cost of building solar power plants in Belarus in 2013–2017 was lower than the world average. The cost of electricity production is analyzed depending on the geographical location of sites and the type of owners of solar power plants (i.e., households, businesses and industrial enterprises, electricity producers). Using the data on the cost of photovoltaic systems as presented by IRENA and considering actinometric data for Belarus and Tatarstan, a long-term forecast of PV electricity cost is made. The moments of the break-even points and payback periods are defined for Belarus and Tatarstan.

2017 ◽  
Vol 1 (17) ◽  
Author(s):  
Ivan Stevović

The strategy for developing and improving the application of green, clean, renewable and gratis solarenergy is a challenge for multidisciplinary teams of scientists. Exquisite examples of positive worldpractice of the largest solar power plants are presented in this paper, with all the characteristics, startingfrom the materials of photovoltaic panels and technical performance to the cost and financial benefits.The aim was to analyze the development of solar technologies in the function of defining furtherperspectives. The techno economic feasibility of the strategic orientation towards solar energy has beendemonstrated in the model of the solar power plant, carried out by experiment, profitability calculationand multi-criteria analysis. The conclusion is that long-term financial and holistic benefits can beachieved by investing in solar power plants.


2018 ◽  
Vol 10 (11) ◽  
pp. 3937 ◽  
Author(s):  
Sahar Bouaddi ◽  
Aránzazu Fernández-García ◽  
Chris Sansom ◽  
Jon Sarasua ◽  
Fabian Wolfertstetter ◽  
...  

The severe soiling of reflectors deployed in arid and semi arid locations decreases their reflectance and drives down the yield of the concentrating solar power (CSP) plants. To alleviate this issue, various sets of methods are available. The operation and maintenance (O&M) staff should opt for sustainable cleaning methods that are safe and environmentally friendly. To restore high reflectance, the cleaning vehicles of CSP plants must adapt to the constraints of each technology and to the layout of reflectors in the solar field. Water based methods are currently the most commonly used in CSP plants but they are not sustainable due to water scarcity and high soiling rates. The recovery and reuse of washing water can compensate for these methods and make them a more reasonable option for mediterranean and desert environments. Dry methods, on the other hand, are gaining more attraction as they are more suitable for desert regions. Some of these methods rely on ultrasonic wave or vibration for detaching the dust bonding from the reflectors surface, while other methods, known as preventive methods, focus on reducing the soiling by modifying the reflectors surface and incorporating self cleaning features using special coatings. Since the CSP plants operators aim to achieve the highest profit by minimizing the cost of cleaning while maintaining a high reflectance, optimizing the cleaning parameters and strategies is of great interest. This work presents the conventional water-based methods that are currently used in CSP plants in addition to sustainable alternative methods for dust removal and soiling prevention. Also, the cleaning effectiveness, the environmental impacts and the economic aspects of each technology are discussed.


Author(s):  
Henry Price ◽  
David Kearney

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 312
Author(s):  
Abdulaziz Alhammad ◽  
Qian (Chayn) Sun ◽  
Yaguang Tao

Many countries have set a goal for a carbon neutral future, and the adoption of solar energy as an alternative energy source to fossil fuel is one of the major measures planned. Yet not all locations are equally suitable for solar energy generation. This is due to uneven solar radiation distribution as well as various environmental factors. A number of studies in the literature have used multicriteria decision analysis (MCDA) to determine the most suitable places to build solar power plants. To the best of our knowledge, no study has addressed the subject of optimal solar plant site identification for the Al-Qassim region, although developing renewable energy in Saudi Arabia has been put on the agenda. This paper developed a spatial MCDA framework catering to the characteristics of the Al-Qassim region. The framework adopts several tools used in Geographic Information Systems (GIS), such as Random Forest (RF) raster classification and model builder. The framework aims to ascertain the ideal sites for solar power plants in the Al-Qassim region in terms of the amount of potential photovoltaic electricity production (PVOUT) that could be produced from solar energy. For that, a combination of GIS and Analytical Hierarchy Process (AHP) techniques were employed to determine five sub-criteria weights (Slope, Global Horizontal Irradiance (GHI), proximity to roads, proximity to residential areas, proximity to powerlines) before performing spatial MCDA. The result showed that ‘the most suitable’ and ‘suitable’ areas for the establishment of solar plants are in the south and southwest of the region, representing about 17.53% of the study area. The ‘unsuitable’ areas account for about 10.17% of the total study area, which is mainly concentrated in the northern part. The rest of the region is further classified into ‘moderate’ and ‘restricted’ areas, which account for 46.42% and 25.88%, respectively. The most suitable area for potential solar energy, yields approximately 1905 Kwh/Kwp in terms of PVOUT. The proposed framework also has the potential to be applied to other regions nationally and internationally. This work contributes a reproducible GIS workflow for a low-cost but accurate adoption of a solar energy plan to achieve sustainable development goals.


Solar energy, which is essential for all on earth, is clean and plentiful and can be transformed into electrical energy using photovoltaic (PV) systems. The generation of energy using different types of PV solar panel mountings viz. fixed, tracking, and adjustable, depends on a variety of factors such as sun intensity, relative humidity, cloud cover, and heat buildup. This paper reviews the various parameters which influence the performance of solar power plants. Further, the performance comparison of fixed and tracking PV systems shows that in comparison to the classical fixed-position PV systems, the tracking type of PV systems capture much more solar energy and thus produce substantially higher output power. Furthermore, consideration is also given to design variables which should be taken into account during the initial stage of engineering of a plant to achieve better performances and outcomes from the generation of a solar power plant.


Author(s):  
Mihailo Mitković ◽  
Jelena Đekić ◽  
Petar Mitković ◽  
Milica Igić

The solar radiation and energy potential in Serbia is 30% higher than in Central Europe, and the intensity of solar radiation is among the highest in Europe. Specifically suitable are the condition for usage of solar energy in southeast Serbia where the annual average of global radiation on a horizontal surface amounts to more than 4.2 kWh/m2 a day. This chapter discusses four photovoltaic solar power plants, two having been installed in the territory of the city of Leskovac and two in the Bosilegrad territory. The research is based on geographical location of solar power plants, orientation, and inclination of the panels in respect to the horizontal surface. All the processed solar power plants have the capacity 30-40 kW. The chapter is projection of two years of researching and measuring data on the initial investments in order reach profitability and investment return period. The solar power plants that have fitted angle of 33° (Fortuna) give higher production of electric power than in those panels that have angle inclination of 10° (Domit).


2020 ◽  
Vol 24 (10) ◽  
pp. 50-56
Author(s):  
G.A. Shcheglov

Considered a proposal to combat global warming, which consists in placing the creation of information in near-earth space. It is shown that instead of a space solar power plant that transmits energy to terrestrial consumers, it is more profitable to organize an orbital territorial-production complex, in which a new information and communications energy production cycle is implemented: the energy received from the Sun is used on site to create and store valuable information, and instead of an unused technology of wireless energy transmission to Earth, using a well-functioning space communication technology. Using the simplest mathematical model, it was demonstrated that the profitability of orbital information must be considered taking into account the anthropogenic impact on the climate of ground data centers. The dependence of the profitability of an information orbital product in comparison with a ground-based analogue on the cost of emission quotas for waste heat and greenhouse gases is discussed.


Sign in / Sign up

Export Citation Format

Share Document