thermal spray processes
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1377
Author(s):  
Felice Rubino ◽  
Pedro Poza ◽  
Germana Pasquino ◽  
Pierpaolo Carlone

Solar power is a sustainable and affordable source of energy, and has gained interest from academies, companies, and government institutions as a potential and efficient alternative for next-generation energy production. To promote the penetration of solar power in the energy market, solar-generated electricity needs to be cost-competitive with fossil fuels and other renewables. Development of new materials for solar absorbers able to collect a higher fraction of solar radiation and work at higher temperatures, together with improved design of thermal energy storage systems and components, have been addressed as strategies for increasing the efficiency of solar power plants, offering dispatchable energy and adapting the electricity production to the curve demand. Manufacturing of concentrating solar power components greatly affects their performance and durability and, thus, the global efficiency of solar power plants. The development of viable, sustainable, and efficient manufacturing procedures and processes became key aspects within the breakthrough strategies of solar power technologies. This paper provides an outlook on the application of thermal spray processes to produce selective solar absorbing coatings in solar tower receivers and high-temperature protective barriers as strategies to mitigate the corrosion of concentrating solar power and thermal energy storage components when exposed to aggressive media during service life.



Author(s):  
Nitish Kumar ◽  
Mohit Gupta ◽  
Daniel E. Mack ◽  
Georg Mauer ◽  
Robert Vaßen

AbstractSuspension plasma spraying (SPS) and plasma spray-physical vapor deposition (PS-PVD) are the only thermal spray technologies shown to be capable of producing TBCs with columnar microstructures similar to the electron beam-physical vapor deposition (EB-PVD) process but at higher deposition rates and relatively lower costs. The objective of this study was to achieve fundamental understanding of the effect of different columnar microstructures produced by these two thermal spray processes on their insulation and lifetime performance and propose an optimized columnar microstructure. Characterization of TBCs in terms of microstructure, thermal conductivity, thermal cyclic fatigue lifetime and burner rig lifetime was performed. The results were compared with TBCs produced by the standard thermal spray technique, atmospheric plasma spraying (APS). Bondcoats deposited by the emerging high-velocity air fuel (HVAF) spraying were compared to the standard vacuum plasma-sprayed (VPS) bondcoats to investigate the influence of the bondcoat deposition process as well as topcoat–bondcoat interface topography. The results showed that the dense PS-PVD-processed TBC had the highest lifetime, although at an expense of the highest thermal conductivity. The reason for this behavior was attributed to the dense intracolumnar structure, wide intercolumnar gaps and high column density, thus improving the strain tolerance and fracture toughness.



2021 ◽  
Author(s):  
A. Becker ◽  
K. Bertoul ◽  
A.G.M. Pukasiewicz ◽  
I.B.A.F. Siqueira ◽  
A. Chicoski ◽  
...  

Abstract Hydroelectric turbines are strongly affected by cavitation and the damage it can cause to critical part surfaces and profiles. The study of thermal spray processes and materials is thus relevant to improving turbine performance. The main objective of this work is to evaluate the influence of fuel-oxygen ratio on tungsten- and chromium-carbide cermet coatings deposited by HVOF. Particle velocity and temperature were measured as were coating hardness, porosity, and cavitation resistance. Higher particle velocities were obtained at higher fuel ratios, producing harder, denser coatings with better cavitation resistance. Based on test results, the wear mechanism starts with the nucleation of the cavitation that occurs in the pores, resulting in the formation of craters and the eventual detachment of lamellae as indicated by the smoothness of the surface.



2021 ◽  
Author(s):  
Yijun Yao ◽  
Shaowu Liu ◽  
Marie-Pierre Planche ◽  
Sihao Deng ◽  
Hanlin Liao

Abstract In thermal spray processes, the characteristics of in-flight particles (velocity and temperature) have a significant effect on coating performance. Although many imaging systems and algorithms have been developed for identifying and tracking in-flight particles, most are limited in terms of accuracy. One key to solving the tracking problem is to get an algorithm that can distinguish different particles in each image frame. As the study showed, when noise and interference are treated, particles are more readily identified in the background, leading to more accurate size and position measurements with respect to time. This approach is demonstrated and the results discussed.



Author(s):  
Kirsten Bobzin ◽  
Wolfgang Wietheger ◽  
Martin Andreas Knoch

AbstractThermoplastics combine high freedom of design with economical mass production. Metallic coatings on thermoplastics enable power and signal transmission, shield sensitive parts inside of housings and can reduce the temperature in critical areas by functioning as a heat sink. The most used technical thermoplastics are polyamides (PA), while the described use cases are often realized using Cu. Consequently, several studies tried to apply copper coatings on PA substrates via thermal spraying; so far, this combination is only feasible using an interlayer. In this study, a new approach to metallize thermoplastics via thermal spraying based on validated state-of-the-art predictions of the thermoplastics’ material response at relevant temperatures and strain rates is presented. Using these predictions, high velocity wire-arc spraying was selected as coating process. Furthermore, the process parameters were adapted to realize a continuous coating while also roughening the substrate during coating deposition. The resulting Cu coating on PA6 had a sufficiently high coating adhesion for post-treatment by grinding. The adhesion is achieved by in situ roughening during the coating application. The results indicate that different process parameters for initial layer deposition and further coating buildup are required due to the low thermal stability of PA6.



2021 ◽  
Vol 26 ◽  
Author(s):  
Rodolpho Fernando Váz ◽  
Romildo Tristante ◽  
Anderson Geraldo Marenda Pukasiewicz ◽  
Andre Ricardo Capra ◽  
André Chicoski ◽  
...  

Abstract: Hydraulic runners are susceptible to failures by cracks or wear by erosion, corrosion, or cavitation. The modern runners are fabricated in carbon steel and martensitic stainless steel. Arc welding processes normally do the repair of eroded areas, or cracked parts. Each material or type of repair needs specific criteria, procedures, and precautions to guarantee their success and prevent future issues, like the recurrence of the cracks or reduction of the useful life of the runner by modifications of the original material. Wear-resistant coatings are applied by welding or by thermal spray processes, considering this last one has no metallurgical interaction with the material of the runner, keeping the original properties of the material. For several years the companies Copel GeT, Lactec, UTFPR, and UFPR collaborate on the study of different techniques, methods, and processes to repair hydraulic runners, this work aims to present a short compilation, and examples of some results obtained applied on real runners.





2020 ◽  
Vol 195 ◽  
pp. 109043 ◽  
Author(s):  
Gi-Su Ham ◽  
Kyoung-Wook Kim ◽  
Geun-Sang Cho ◽  
Choongnyun Paul Kim ◽  
Kee-Ahn Lee


2020 ◽  
Vol 40 (12) ◽  
pp. 4084-4100 ◽  
Author(s):  
Stefania Morelli ◽  
Veronica Testa ◽  
Giovanni Bolelli ◽  
Omar Ligabue ◽  
Eleonora Molinari ◽  
...  


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2638 ◽  
Author(s):  
Monika Michalak ◽  
Filofteia-Laura Toma ◽  
Leszek Latka ◽  
Pawel Sokolowski ◽  
Maria Barbosa ◽  
...  

In this work, the alumina (Al2O3) and alumina-titania coatings with different contents of TiO2, i.e., Al2O3 + 13 wt.% TiO2 and Al2O3 + 40 wt.% TiO2, were studied. The coatings were produced by means of powder and liquid feedstock thermal spray processes, namely atmospheric plasma spraying (APS), suspension plasma spraying (SPS) and suspension high-velocity oxygen fuel spraying (S-HVOF). The aim of the study was to investigate the influence of spray feedstocks characteristics and spray processes on the coating morphology, microstructure and phase composition. The results revealed that the microstructural features were clearly related both to the spray processes and chemical composition of feedstocks. In terms of phase composition, in Al2O3 (AT0) and Al2O3 + 13 wt.% TiO2 (AT13) coatings, the decrease in α-Al2O3, which partially transformed into γ-Al2O3, was the dominant change. The increased content of TiO2 to 40 wt.% (AT40) involved also an increase in phases related to the binary system Al2O3-TiO2 (Al2TiO5 and Al2−xTi1+xO5). The obtained results confirmed that desired α-Al2O3 or α-Al2O3, together with rutile-TiO2 phases, may be preserved more easily in alumina-titania coatings sprayed by liquid feedstocks.



Sign in / Sign up

Export Citation Format

Share Document