Stress Systems in Orthotropic Quarter Plane

1987 ◽  
Vol 113 (11) ◽  
pp. 1720-1738 ◽  
Author(s):  
M. C. Constantinou ◽  
Robin S. Greenleaf
Keyword(s):  
10.37236/156 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
M. Kuba ◽  
A. Panholzer ◽  
H. Prodinger

In this work we consider weighted lattice paths in the quarter plane ${\Bbb N}_0\times{\Bbb N}_0$. The steps are given by $(m,n)\to(m-1,n)$, $(m,n)\to(m,n-1)$ and are weighted as follows: $(m,n)\to(m-1,n)$ by $m/(m+n)$ and step $(m,n)\to(m,n-1)$ by $n/(m+n)$. The considered lattice paths are absorbed at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$. We provide explicit formulæ for the sum of the weights of paths, starting at $(m,n)$, which are absorbed at a certain height $k$ at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$, using a generating functions approach. Furthermore these weighted lattice paths can be interpreted as probability distributions arising in the context of Pólya-Eggenberger urn models, more precisely, the lattice paths are sample paths of the well known sampling without replacement urn. We provide limiting distribution results for the underlying random variable, obtaining a total of five phase changes.


2019 ◽  
Vol 52 (1) ◽  
pp. 237-248
Author(s):  
Esen Hanaç

AbstractIn this paper we investigate an initial-boundary value problem for the Burgers equation on the positive quarter-plane; $\matrix{ {{v_t} + v{v_x} - {v_{xx}} = 0,\,\,\,x > 0,\,\,\,t > 0,} \cr {v\left( {x,0} \right) = {u_ + },\,\,\,x > 0,} \cr {v\left( {0,t} \right) = {u_b},\,\,t > 0,} \cr }$ where x and t represent distance and time, respectively, and u+ is an initial condition, ub is a boundary condition which are constants (u+ ≠ ub). Analytic solution of above problem is solved depending on parameters (u+ and ub) then compared with numerical solutions to show there is a good agreement with each solutions.


Sign in / Sign up

Export Citation Format

Share Document