Strain Rate Effect on Structural Steel under Cyclic Loading

1987 ◽  
Vol 113 (9) ◽  
pp. 1292-1301 ◽  
Author(s):  
Kuo‐Chun Chang ◽  
George C. Lee
Author(s):  
Pham Thai Hoan ◽  
Nguyen Ngoc Vinh ◽  
Nguyen Thi Thanh Tung

In this study, instrumented indentation testing was conducted at room temperature for the investigation of the effect of strain rate on the hardness and yield strength in the weld zone of a commonly used structural steel, SM520. A number of indentation tests were undertaken at a number of strain rate values from 0.02 s-1 to 0.2 s-1 in the weld metal (WM), heat-affected zone (HAZ), and base metal (BM) regions of the weld zone. The mechanical properties including yield strength (σy) and hardness (H) in WM, HAZ, and BM were then computed from the applied load-penetration depth curves using a proposed method. As the result, the effects of strain rate indentation on yield strength and hardness in all regions of the weld zone were evaluated. The results displayed that hardness and yield strength in the weld zone’s components are influenced on the strain rate, where both hardness and yield strength decrease with the decreasing strain rate. Keywords: indentation; mechanical properties; strain rate effect; structural steel; weld zone.


2006 ◽  
Vol 532-533 ◽  
pp. 973-976
Author(s):  
Lin Wang ◽  
Tai Chiu Lee ◽  
Luen Chow Chan

In this paper, the effect of strain rate has been considered in the simulation of forming process with a simple form combined into the material law. Quite a few researchers have proposed various hardening laws and strain rate functions to describe the material tensile curve. In this study, the strain rate model Cowper-Symonds is used with anisotropic elasto-plastic material law in the simulation process. The strain path evolution of certain elements, when the strain rate is considered and not, is compared. Two sheet materials, Cold-reduced Carbon Steel (SPCC) JIS G3141 and Aluminum alloy 6112 are used in this study. Two yield criteria, Hill 48 and Hill 90, are applied respectively to improve the accuracy of simulation result. They show different performance when strain rate effect is considered. Strain path of the elements in the fracture risk area of SPCC (JIS G3141) varies much when the strain rate material law is used. There is only little difference of the strain distribution of Al 6112 when the strain rate effect is included and excluded in the material law. The simulation results of material SPCC under two conditions indicate that the strain rate should be considered if the material is the rate-sensitive material, which provides more accurate simulation results.


Sign in / Sign up

Export Citation Format

Share Document