Parametric Equation for Static Strength of Tubular Circular Hollow Section Joints with Complete Overlap of Braces

2008 ◽  
Vol 134 (3) ◽  
pp. 393-401 ◽  
Author(s):  
W. M. Gho ◽  
Y. Yang
2012 ◽  
Vol 166-169 ◽  
pp. 645-648
Author(s):  
Wei Ning Sui ◽  
Xin Long Zhang ◽  
Guo Chang Li ◽  
Xue Bai

Abstract: In order to study static strength of doubler plate reinforced circular hollow section (CHS) K-joints, experimental and numerical studies conducted by the authors. The effects of parameters Δ (the ratio between the length of doubler plate and the diameter of the brace) and α (the width of the doubler plate) on CHS K-joints subjected to bending load have been investigated and reported by the authors. It is found that the ultimate strength of a CHS K-joints reinforced with appropriately proportioned doubler plates can be up to 2 ratio to its un-reinforced counterpart. Reasonable geometric parameters of the doubler plate can make the chord, brace and doubler plate work together to bear the external bending load. The width and length parameter of the doubler plate, however, have no effect on the stiffness of the reinforced K-joints.


2016 ◽  
Vol 20 (5) ◽  
pp. 704-721 ◽  
Author(s):  
Yongbo Shao ◽  
Haicheng Zhao ◽  
Dongping Yang

To predict the static strength of a welded tubular joint at elevated temperature using finite element simulation, two methods in the literature were reported. The first method aims to analyze the static strength of a tubular joint at a specified elevated temperature, and a routine mechanical analysis is carried out by defining the material properties at the specified elevated temperature according to some specifications. This method does not consider the heat transfer process of the tubular joint in a fire condition. The second method is used to determine the static strength of a tubular joint using a combination of transient state heat transfer analysis and mechanical analysis. The tubular joint subjected to a specified load is heated in accordance with ISO 834-1 standard fire curve to fail at a critical temperature, and the specified load is considered as the static strength of the joint at the critical temperature. In this study, a detailed parametric study on the failure process of circular hollow section tubular T-joints at elevated temperature is carried out using finite element method. The static strengths of the circular hollow section T-joint models obtained from the two methods are compared. The comparison shows that the first method produces a higher estimation on the static strength compared to the second method. Finally, the effect of some geometrical parameters, chord stress ratio, and elevated temperature on the difference of the two methods is also investigated.


2007 ◽  
Vol 129 (3) ◽  
pp. 177-189 ◽  
Author(s):  
David Pecknold ◽  
Peter Marshall ◽  
Justin Bucknell

The development of the new API RP2A (22nd edition) parametric static strength prediction equations for planar circular hollow section tubular joints is described. Prediction equations are presented for brace axial, brace in-plane bending, and brace out-of-plane bending loads. The prediction equations are based on screened test databases, augmented, and extended by an extensive new series of validated nonlinear finite element simulations for nonoverlapping K joints, double tee (DT/X) joints, and T joints. The increased reliability (reduced scatter) provided by the new static strength formulation was used to justify a reduction of the load factor of safety to 1.6 from the previous value of 1.7.


2011 ◽  
Vol 99-100 ◽  
pp. 72-75 ◽  
Author(s):  
Cheng Chen ◽  
Yong Bo Shao ◽  
Jie Yang

The static strength of circular hollow section (CHS) T-joint reinforced with FRP (Fiber Reinforced Polymer) is studied through the experimental test and finite element simulation. Based on the reliability of the finite element simulation which is verified from experimental data, the parametric analysis is conducted by using finite element (FE) software ABAQUS. In the parametric analysis, the improvement of FRP with different bonding lengths, directions and layers on the static strength of tubular T-joints is considered. Simultaneously, the effect of two key geometrical parameters  and  of the tubular joints on the reinforced efficiency is also included. Based on the results of the parametric study, the effect of FRP on increasing the static strength of tubular joints is finally generalized.


2016 ◽  
Vol 118 ◽  
pp. 216-225 ◽  
Author(s):  
M.H. Kabir ◽  
S. Fawzia ◽  
T.H.T. Chan ◽  
M. Badawi

2015 ◽  
Vol 72 (5) ◽  
Author(s):  
Candra Irawan ◽  
Priyo Suprobo ◽  
I Gusti Putu Raka ◽  
Rudy Djamaluddin

Spun pile is one of the types of piles are widely used in the world construction, for example in building and bridge. Spun pile is a prestressed concrete pile with circular hollow section. This paper provides an overview of the research development of spun pile, starting from 80's until now. This overview is related to methods of increasing the strength and reliability of spun pile due to earthquake loads, either by modifying the longitudinal reinforcement and confinement. In addition, this paper also discusses about the failure patterns of spun pile due to seismic loads. Finally, this paper can be a reference for understanding the scope of the research topics that have been done by researchers. Thus, by this overview can be obtained new idea for the next research to improve the performance of spun pile carry seismic loads.


2017 ◽  
pp. 73-79
Author(s):  
Tretyakov Alexey ◽  
Tkalenko Illia ◽  
Wald František ◽  
Novak Josef ◽  
Stefan Radek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document