scholarly journals Finite-Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite

2011 ◽  
Vol 24 (2) ◽  
pp. 170-180 ◽  
Author(s):  
Xuetao Li ◽  
Wieslaw K. Binienda ◽  
Robert K. Goldberg
1997 ◽  
Vol 82 (6) ◽  
pp. 2036-2044 ◽  
Author(s):  
Andreas O. Frank ◽  
C. J. Charles Chuong ◽  
Robert L. Johnson

Frank, Andreas O., C. J. Charles Chuong, and Robert L. Johnson. A finite-element model of oxygen diffusion in the pulmonary capillaries. J. Appl. Physiol. 82(6): 2036–2044, 1997.—We determined the overall pulmonary diffusing capacity (Dl) and the diffusing capacities of the alveolar membrane (Dm) and the red blood cell (RBC) segments (De) of the diffusional pathway for O2 by using a two-dimensional finite-element model developed to represent the sheet-flow characteristics of pulmonary capillaries. An axisymmetric model was also considered to assess the effect of geometric configuration. Results showed the membrane segment contributing the major resistance, with the RBC segment resistance increasing as O2 saturation ([Formula: see text]) rises during the RBC transit: RBC contributed 7% of the total resistance at the capillary inlet ([Formula: see text] = 75%) and 30% toward the capillary end ([Formula: see text] = 95%) for a 45% hematocrit (Hct). Both Dm and Dlincreased as the Hct increased but began approaching a plateau near an Hct of 35%, due to competition between RBCs for O2 influx. Both Dm and Dl were found to be relatively insensitive (2∼4%) to changes in plasma protein concentration (28∼45%). Axisymmetric results showed similar trends for all Hct and protein concentrations but consistently overestimated the diffusing capacities (∼2.2 times), primarily because of an exaggerated air-tissue barrier surface area. The two-dimensional model correlated reasonably well with experimental data and can better represent the O2 uptake of the pulmonary capillary bed.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 76
Author(s):  
Ashraf Hefny ◽  
Mohamed Ezzat Al-Atroush ◽  
Mai Abualkhair ◽  
Mariam Juma Alnuaimi

The complexities and the economic computational infeasibility associated in some cases, with three-dimensional finite element models, has imposed a motive for many investigators to accept numerical modeling simplification solutions such as assuming two-dimensional (2D) plane strain conditions in simulation of several supported-deep excavation problems, especially for cases with a relatively high aspect ratio in plan dimensions. In this research, a two-dimensional finite element model was established to simulate the behavior of the supporting system of a large-scale deep excavation utilized in the construction of an underground metro station Rod El Farrag project (Egypt). The essential geotechnical engineering properties of soil layers were calculated using results of in-situ and laboratory tests and empirical correlations with SPT-N values. On the other hand, a three-dimensional finite element model was established with the same parameters adopted in the two-dimensional model. Sufficient sensitivity numerical analyses were performed to make the three-dimensional finite element model economically feasible. Results of the two-dimensional model were compared with those obtained from the field measurements and the three-dimensional numerical model. The comparison results showed that 3D high stiffening at the primary walls’ corners and also at the locations of cross walls has a significant effect on both the lateral wall deformations and the neighboring soil vertical settlement.


Sign in / Sign up

Export Citation Format

Share Document