Radiative Maxwell Fluid Flow with Variable Thermal Conductivity due to a Stretching Surface in a Porous Medium

2014 ◽  
Vol 27 (5) ◽  
pp. 04014023 ◽  
Author(s):  
S. A. Shehzad ◽  
M. Qasim ◽  
A. Alsaedi ◽  
T. Hayat ◽  
F. Alsaadi
2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 599-615 ◽  
Author(s):  
V. Singh ◽  
Shweta Agarwal

An analysis is made to study MHD flow and heat transfer for Maxwell fluid over an exponentially stretching sheet through a porous medium in the presence of non-uniform heat source/sink with variable thermal conductivity. The thermal conductivity is assumed to vary as a linear function of temperature. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using implicit finite difference scheme known as Keller-box method. The effect of the governing parameters on the flow field, skin friction coefficient, wall temperature gradient (in prescribed surface temperature case), wall temperature (in prescribed heat flux case) and Nusselt number are computed, analyzed and discussed through graphs and tables. The present results are found to be in excellent agreement with previously published work [1,2] on various special cases of the problem.


2020 ◽  
Vol 401 ◽  
pp. 148-163 ◽  
Author(s):  
G. Sarojamma ◽  
K. Sreelakshmi ◽  
P. Krishna Jyothi ◽  
P.V. Satya Narayana

In this report, the effects of homogeneous-heterogeneous autocatalytic chemical reaction together with the variable thermal conductivity in the Maxwell fluid flow due to nonlinear surface of variable thickness are investigated. Thermal radiation and heat generation / absorption effects are also incorporated in the analysis. Appropriate scaling analysis is implemented to reduce the mathematical model describing the physics of the problem in to a set of nonlinear differential equations and are subsequently solved computationally. Graphical illustrations indicating the effect of pertinent parameters on momentum, thermal and solutal boundary layers are presented and discussed. The study reveals that velocity distribution shows a decreasing (increasing) tendency for larger values of wall thickness parameter when the velocity power law index is less (greater) than unity. The concentration of the homogeneous bulk fluid with catalyst at the surface decreases with increasing chemical reaction rate parameters.


2020 ◽  
Vol 9 (1) ◽  
pp. 338-351
Author(s):  
Usha Shankar ◽  
N. B. Naduvinamani ◽  
Hussain Basha

AbstractA two-dimensional mathematical model of magnetized unsteady incompressible Williamson fluid flow over a sensor surface with variable thermal conductivity and exterior squeezing with viscous dissipation effect is investigated, numerically. Present flow model is developed based on the considered flow geometry. Effect of Lorentz forces on flow behaviour is described in terms of magnetic field and which is accounted in momentum equation. Influence of variable thermal conductivity on heat transfer is considered in the energy equation. Present investigated problem gives the highly complicated nonlinear, unsteady governing flow equations and which are coupled in nature. Owing to the failure of analytical/direct techniques, the considered physical problem is solved by using Runge-Kutta scheme (RK-4) via similarity transformations approach. Graphs and tables are presented to describe the physical behaviour of various control parameters on flow phenomenon. Temperature boundary layer thickens for the amplifying value of Weissenberg parameter and permeable velocity parameter. Velocity profile decreased for the increasing squeezed flow index and permeable velocity parameter. Increasing magnetic number increases the velocity profile. Magnifying squeezed flow index magnifies the magnitude of Nusselt number. Also, RK-4 efficiently solves the highly complicated nonlinear complex equations that are arising in the fluid flow problems. The present results in this article are significantly matching with the published results in the literature.


2018 ◽  
Vol 48 (2) ◽  
pp. 744-759 ◽  
Author(s):  
Kh. Hosseinzadeh ◽  
M. Gholinia ◽  
B. Jafari ◽  
A. Ghanbarpour ◽  
H. Olfian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document