Improvement of Aerodynamic Performance and Energy Supply of Bridges Using Small Wind Turbines

2015 ◽  
Vol 20 (10) ◽  
pp. 04014116 ◽  
Author(s):  
Seungho Lee ◽  
Soon-Duck Kwon
2013 ◽  
Vol 13 (06) ◽  
pp. 1340022 ◽  
Author(s):  
WEIJUN TIAN ◽  
FANGYUAN LIU ◽  
QIAN CONG ◽  
YURONG LIU ◽  
LUQUAN REN

This paper demonstrates the design of the airfoil of small wind turbines, the bionic airfoil was inspired by the morphology of the swallow's extended wing. The wind tunnel tests on the bionic and standard airfoils NACA4412 were conducted, and the aerodynamic performances of the airfoils were numerically investigated. The results show that the bionic airfoil has better aerodynamic performance, the lift coefficient and lift-drag ratio are larger than those of the NACA4412; with the angle of attack increases, both the bionic and standard airfoils stall, but the stall characteristics of the bionic airfoil are better.


2010 ◽  
Vol 53 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Taehyung Kim ◽  
Seungmin Lee ◽  
Hogeon Kim ◽  
Soogab Lee

2016 ◽  
Vol 15 (2) ◽  
pp. 15
Author(s):  
S. O. Garré ◽  
A. V. Paula ◽  
J. L. R. Luz ◽  
T. D. J. Vecina ◽  
A. P. Petry

This paper presents the experimental evaluation of the aerodynamic performance of two small wind turbines models with five blades in the Aerodynamic Tunnel Professor Debi Pada Sadhu. The models were confectioned on a reduced scale using 3D prototyping, the first one was designed using the blade element method, assuming the power coefficient of Betz, named Optimal Blade Betz (OBB) and the second is modified from the first one, named Optimal Blade Betz Modified (OBBM). The velocity distribution in the cross section of the tunnel was determined with the aid of a Pitot tube before the evaluation of the equipment. With the known tunnel velocity profile, the static torque of the prototypes were determined with the use of a digital torquemeter coupled to the machine axis, which recorded the readings for the speed range of 1 m/s to 9.88 m/s. Also with the torquemeter, were evaluated the influence of the angular position of the blades in the measured torque. The blades were designed allowing vary their angular position in the hub, thus changing the angle of attack, and by consequence, the torque produced. A photo tachometer was employed to measure the rotation of the model in free spin. With the experimental data, the curves of static torque and angular velocity were determined as a function of incident speed. Through experimental determination of the incident velocity profile and the velocity profile in the aerodynamic wake of each turbine, the variation of the amount of momentum of the outflow was evaluated, and so the power extracted by the rotor in free rotation. This study aims to contribute to the design of a real small wind turbine, informing the aerodynamic characteristics of the equipment that can be constructed with this layout. The experimental results demonstrate good approximation for torque and power to the results obtained by evaluation by element of the blade method. The turbine constructed with Optimal Betz Blades presented static torque 17.8% higher than constructed with the Modified Blades and extracted 22% more power from the air outflow.


2016 ◽  
Vol 19 ◽  
pp. 3-9
Author(s):  
Johannes Weber ◽  
Sebastian Riedel ◽  
Julian Praß ◽  
Andreas Renz ◽  
Stefan Becker ◽  
...  

Small wind turbines are investigated as a possible solution for using wind energy at small scales in urban and suburban areas. Most turbines are suffering from a low aerodynamic performance due to turbulent and complex wind situations in cities. Therefore, increasing aerodynamic performance and reducing noise is an important factor to design small wind turbines. In order to optimize such turbines with respect to noise and efficiency it is important to understand the physical mechanisms. Measuring acoustic in urban environment it is hardly possible to obtain reproducible results, which are necessary for a comprehensively and profoundly investigation. Therefore, experimental studies have to been performed in anechoic wind tunnels. Those tunnels are mostly limited in size, which makes it quite difficult to investigate full small wind turbine models. Hence a model scale has to be used in order to measure the power and acoustic performance. For comparing the model scale results with original turbines, the same flow conditions around the airfoils are necessary. Due to the smaller size of the model scale the relative velocities of the blades are less, which can result in a laminar boundary layer. In order to force transition from laminar to turbulent, boundary layer trips can be used. The focus of this study is to examine and quantify the effect of boundary layer tripping on the aeroacoustics in case of small vertical axis wind turbines.


2012 ◽  
pp. 1083-1088
Author(s):  
O.H. Ando Junior ◽  
M.O. Oliveira ◽  
J.M. Neto ◽  
A.D. Spacek ◽  
R.C.B. Leborgne ◽  
...  

Author(s):  
Pedro Baracat ◽  
Célia Rosolen ◽  
Raquel Miguez de Carvalho ◽  
Kamal Ismail ◽  
Willian Okita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document