STUDY ON AERODYNAMIC PERFORMANCE OF THE BIONIC AIRFOIL BASED ON THE SWALLOW'S WING

2013 ◽  
Vol 13 (06) ◽  
pp. 1340022 ◽  
Author(s):  
WEIJUN TIAN ◽  
FANGYUAN LIU ◽  
QIAN CONG ◽  
YURONG LIU ◽  
LUQUAN REN

This paper demonstrates the design of the airfoil of small wind turbines, the bionic airfoil was inspired by the morphology of the swallow's extended wing. The wind tunnel tests on the bionic and standard airfoils NACA4412 were conducted, and the aerodynamic performances of the airfoils were numerically investigated. The results show that the bionic airfoil has better aerodynamic performance, the lift coefficient and lift-drag ratio are larger than those of the NACA4412; with the angle of attack increases, both the bionic and standard airfoils stall, but the stall characteristics of the bionic airfoil are better.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 959 ◽  
Author(s):  
Xinkai Li ◽  
Ke Yang ◽  
Xiaodong Wang

To explore the effect of the height of vortex generators (VGs) on the control effect of boundary-layer flow, the vortex characteristics of a plate and the aerodynamic characteristics of an airfoil for VGs were studied by both wind tunnel experiments and numerical methods. Firstly, the ratio of VG height (H) to boundary layer thickness (δ) was studied on a flat plate boundary layer; the values of H are 0.1δ, 0.2δ, 0.5δ, 1.0δ, 1.5δ, and 2.0δ. Results show that the concentrated vortex intensity and VG height present a logarithmic relationship, and vortex intensity is proportional to the average kinetic energy of the fluid in the height range of the VG. Secondly, the effects of height on the aerodynamic performance of airfoils were studied in a wind tunnel using three VGs with H = 0.66δ, 1.0δ, and 1.33δ. The stall angle of the airfoil with and without VGs is 18° and 8°, respectively, so the VGs increase the stall angle by 10°. The maximum lift coefficient of the airfoil with VGs increases by 48.7% compared with the airfoil without VGs, and the drag coefficient of the airfoil with VGs is 84.9% lower than that of the airfoil without VGs at an angle of attack of 18°. The maximum lift–drag ratio of the airfoil with VGs is lower than that of the airfoil without VGs, so the VGs do not affect the maximum lift–drag ratio of the airfoil. However, a VG does increase the angle of attack of the best lift–drag ratio.


Author(s):  
B. D. Vick ◽  
W. Wrigglesworth ◽  
L. B. Scott ◽  
K. M. Ragsdell

Abstract A method has been developed and is demonstrated which determines the chord and twist distribution for a wind turbine with maximum power coefficient. Only small wind turbines (less than 10 kilowatts) are considered in this study, but the method could be used for larger wind turbines. Glauert determined a method for estimating the chord and twist distribution that will maximize the power coefficient if there is no drag. However, the method proposed here determines the chord and twist distribution which will maximize the power coefficient with the effect of drag included. Including drag in the analysis does not significantly affect the Glauert chord and twist distribution for airfoils with a high lift coefficient at the maximum lift to drag ratio. However, if the airfoil has a fairly low lift coefficient at its maximum lift to drag ratio due to its shape or a rough surface then significant improvement can be obtained in power coefficient by altering the Glauert chord and twist distribution according to the method proposed herein.


2002 ◽  
Vol 124 (4) ◽  
pp. 327-334 ◽  
Author(s):  
Christian Bak ◽  
Peter Fuglsang

Double stall causes more than one power level when stall-regulated wind turbines operate in stall. This involves significant uncertainty on power production and loads. To avoid double stall, a new leading edge was designed for the NACA 632-415 airfoil, an airfoil that is often used in the tip region of wind turbines. A numerical optimization tool incorporating XFOIL was used with a special formulation for the airfoil leading edge shape. The EllipSys2D CFD code was used to analyze the modified airfoil. In theory and in wind tunnel tests, the modified airfoil showed smooth and stable stall characteristics with no tendency to double stall. Also, both theory and wind tunnel tests showed that the overall aerodynamic characteristics were similar to NACA 632-415 except for an increase in the lift-drag ratio below maximum lift and an increase in maximum lift. The wind tunnel tests showed that dynamic stall and aerodynamic damping characteristics for the modified airfoil and the NACA 632-415 airfoil were the same. The modified airfoil with leading edge roughness in general had better characteristics compared with the NACA 632-415 airfoil.


Author(s):  
Boris A. Mandadzhiev ◽  
Michael K. Lynch ◽  
Leonardo P. Chamorro ◽  
Aimy A. Wissa

Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. In order for a fixed wing aircraft to maintain the lift necessary for sustained flight at very low speeds and large angles of attack (AoA), the wing shape has to change. This is often achieved by using deployable aerodynamic surfaces, such as flaps or slats, from the wing leading or trailing edges. In nature, one such device is a feathered structure on birds’ wings called the alula. The span of the alula is 5% to 20% of the wing and is attached to the first digit of the wing. The goal of the current study is to understand the aerodynamic effects of the alula on wing performance. A series of wind tunnel experiments are performed to quantify the effect of various alula deployment parameters on the aerodynamic performance of a cambered airfoil (S1223). A full wind tunnel span wing, with a single alula located at the wing mid-span is tested under uniform low-turbulence flow at three Reynolds numbers, Re = 85,000, 106,00 and 146,000. An experimental matrix is developed to find the range of effectiveness of an alula-type device. The alula relative angle of attack measured measured from the mean chord of the airfoil is varied to modulate tip-vortex strength, while the alula deflection is varied to modulate the distance of the tip vortex to the wing surface. Lift and drag forces were measured using a six axis force transducer. The lift and drag coefficients showed the greatest sensitivity to the the alula relative angle of attack, increasing the normalized lift coefficient by as much as 80%. Improvements in lift are strongly correlated to higher alula angle, with β = 0° – 5°, while reduction in the drag coefficient is observed with higher alula tip deflection ratios and lower β angles. Results show that, as the wing angle of attack and Reynolds number are increased, the overall lift co-efficient improvement is diminished while the reduction in drag coefficient is higher.


2018 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Henny Pratiwi

This research aims to investigate the effects of angle of attack, Reynold numbers and winglet structure on the performance of Cessna 172 Skyhawk aircraft with winglets variation design. Winglets improve efficiency by diffusing the shed wingtip vortex, which reducing the drag due to lift and improving the wing’s lift over drag ratio. In this research, the specimens are the duplicated of Cesnna 172 Skyhawk wing with 1:40 ratio made of balsa wood. There are three different winglet designs that are compared with the one without winglet. The experiments are conducted in an open wind tunnel to measure the lift and drag force with Reynold numbers of 25,000 and 33,000. It can be concluded that the wings with winglets have higher lift coefficient than wing without winglet for both Reynold numbers. It was also found that all wings with winglets have higher lift-to-drag ratio than wings without winglet where the blended 45o cant angle has the highest value.


Author(s):  
AA Mehraban ◽  
MH Djavareshkian

Sinusoidal leading-edge wings have attracted many considerations since they can delay the stall and enhance the maneuverability. The main contribution of this research study is to experimentally investigate effects of ground on aerodynamic performance of sinusoidal leading-edge wings. To this end, 6 tubercled wings with different amplitudes and wavelengths are fabricated and compared with the baseline wing which has smooth leading-edge. Proposed wings are tested in different distances from the ground in a wind tunnel lab for a wide range of angle of attack from 0° to 36° and low Reynolds number of 45,000. Results indicated that lift coefficient is improved when wings get close to the ground. Furthermore, increment of protuberance amplitude in the vicinity of the ground could efficiently prevent stalling particularly for shorter wavelength.


Author(s):  
Mohammed Rafiuddin Ahmed ◽  
Krishnil R. Ram ◽  
Bum-Suk Kim ◽  
Sunil P. Lal

The root region of small wind turbines experience low Reynolds number (Re) flow that makes it difficult to design airfoils that provide good aerodynamic performance and at the same time, provide structural strength. In the present work, a multi-objective genetic algorithm code was used to design airfoils that are suitable for the root region of small wind turbines. A composite Bezier curve with two Bezier segments and 16 control points (11 of them controlled) was used to parametrize the airfoil problem. Geometric constraints including suitable curvature conditions were enforced to maintain the airfoil thickness between 18% and 22% of chord and a trailing edge thickness of 3% of chord. The objectives were to maximize the lift-to-drag ratio for both clean and soiled conditions. Optimization was done by coupling the flow solver to a genetic algorithm code written in C++, at Re = 200,000 and for angles of attack of 4 and 10 degrees, as the algorithm was found to give smooth variation of lift-to-drag ratio within such a range. The best airfoil from the results was tested in the wind tunnel as well as using ANSYS-CFX. The experimental airfoil had a chord length of 75 mm and was provided with 33 pressure taps. Testing was done for both free and forced transition cases. The airfoil gave the highest lift-to-drag ratio at an angle of 6 degrees with the ratio varying very little between 4 degrees and 8 degrees. Forced transition at 8% of chord did not show significant change in the performance indicating that the airfoil will perform well even in soiled condition. Fixed trailing edge flaps (Gurney flaps) were provided right at the trailing edge on the lower surface. The lift and drag behavior of the airfoil was then studied with Gurney Flaps of 2% and 3% heights, as it was found from previous studies that flap heights of 1% or greater than 3% do not give optimum results. The flaps considerably improved the suction on the upper surface and also improved the pressure on the lower surface, resulting in a higher lift coefficient; at the same time, there was also an increase in the drag coefficient but it was less compared to the increase in the lift coefficient. The results indicate that Gurney flaps can be effectively used to improve the performance of thick trailing edge airfoils designed for the root region of small wind turbines.


2021 ◽  
Vol 11 (18) ◽  
pp. 8395 ◽  
Author(s):  
Pan Xiong ◽  
Lin Wu ◽  
Xinyuan Chen ◽  
Yingguang Wu ◽  
Wenjun Yang

In order to ensure the blade strength of large-scale wind turbine, the blunt trailing edge airfoil structure is proposed, aiming at assessing the impact of the trailing edge shape on the flow characteristics and airfoil performance. In this paper, a Joukowsky airfoil is modified by adding the tail thickness parameter K to achieve the purpose of accurately modifying the thickness of the blunt tail edge of the airfoil. Using Ansys Fluent as a tool, a large eddy simulation (LES) model was used to analyze the vortex structure of the airfoil trailing edge. The attack angles were used as variables to analyze the aerodynamic performance of airfoils with different K-values. It was found that when α = 0°, α = 4°, and α = 8°, the lift coefficient and lift–drag ratio increased with increasing K-value. With the increase in the angle of attack from 8° to 12°, the lift–drag ratio of the airfoil with the blunt tail increased from +70% to −7.3% compared with the original airfoil, which shows that the airfoil with the blunt trailing edge has a better aerodynamic performance at a small angle of attack. The aerodynamic characteristics of the airfoil are affected by the periodic shedding of the wake vortex and also have periodic characteristics. By analyzing the vortex structure at the trailing edge, it was found that the value of K can affect the size of the vortex and the position of vortex generation/shedding. When α = 0°, α = 4°, and α = 8°, the blunt trailing edge could improve the aerodynamic performance of the airfoil; when α = 12°, the position of vortex generation changed, which reduced the aerodynamic performance of the airfoil. Therefore, when designing the trailing edge of an airfoil, the thickness of the trailing edge can be designed according to the specific working conditions. It can provide valuable information for the design and optimization of blunt trailing edge airfoil.


Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
John M. Rainbird ◽  
Joaquim Peiro ◽  
J. Michael R. Graham ◽  
...  

Accurate post-stall airfoil data extending to a full range of incidences between −180° to +180° is important to the analysis of Darrieus vertical-axis wind turbines (VAWTs) since the blades experience a wide range of angles of attack, particularly at the low tip-speed ratios encountered during startup. Due to the scarcity of existing data extending much past stall, and the difficulties associated with obtaining post-stall data by experimental or numerical means, wide use is made of simple models of post-stall lift and drag coefficients in wind turbine modeling (through, for example, BEM codes). Most of these models assume post-stall performance to be virtually independent of profile shape. In this study, wind tunnel tests were carried out on a standard NACA0018 airfoil and a NACA 0018 conformally transformed to mimic the “virtual camber” effect imparted on a blade in a VAWT with a chord-to-radius ratio c/R of 0.25. Unsteady CFD results were taken for the same airfoils both at stationary angles of attack and at angles of attack resulting from a slow VAWT-like motion in an oncoming flow, the latter to better replicate the transient conditions experienced by VAWT blades. Excellent agreement was obtained between the wind tunnel tests and the CFD computations for both the symmetrical and cambered airfoils. Results for both airfoils also compare favorably to earlier studies of similar profiles. Finally, the suitability of different models for post-stall airfoil performance extrapolation, including those of Viterna-Corrigan, Montgomerie and Kirke, was analyzed and discussed.


2021 ◽  
Author(s):  
Nasser Shelil

Abstract. The aerodynamic characteristics of DTU-LN221 airfoil is studied. ANSYS Fluent is used to simulate the airfoil performance with seven different turbulence models. The simulation results for the airfoil with different turbulence models are compared with the wind tunnel experimental data performed under the same operating conditions. It is found that there is a good agreement between the computational fluid dynamics (CFD) predicted aerodynamic force coefficients with wind tunnel experimental data especially with angle of attack between −5° to 10°. RSM is chosen to investigate the flow field structure and the surface pressure coefficients under different angle of attack between −5° to 10°. Also the effect of changing air temperature, velocity and turbulence intensity on lift and drag coefficients/forces are examined. The results show that it is recommended to operate the wind turbines airfoil at low air temperature and high velocity to enhance the performance of the wind turbines.


Sign in / Sign up

Export Citation Format

Share Document