Shear Friction and Strut-and-Tie Modeling Verification for Pier Caps

2021 ◽  
Vol 26 (9) ◽  
pp. 04021059
Author(s):  
Asala Asaad Dawood ◽  
Khattab Saleem Abdul-Razzaq
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Seung-Jun Kwon ◽  
Keun-Hyeok Yang ◽  
Ju-Hyun Mun

This study examined the reliability and limitations of code equations for determining the shear friction strength of a concrete interface with construction joints. This was achieved by examining the code equations (ACI 318-14, AASHTO, and fib 2010) and comparing the results predicted by equations with experimental data compiled from 207 push-off specimens (133 rough and 74 smooth construction joints). The integrated mechanical model for the monolithic interface, derived from the upper-bound theorem of concrete plasticity, was also modified to estimate the shear friction strength of the construction joints. The upper limit for shear friction strength was formulated from a concrete crushing failure limit on the strut-and-tie action along the interfacial plane, to avoid overestimating the shear transfer capacity of transverse reinforcement with a high clamping force. Code equations are highly conservative and dispersive in predicting the shear friction strength of rough construction joints and yield large scattering in the data for the ratios between the measured and predicted shear friction strengths. The predictions obtained using the proposed model agreed well with test results, indicating correlating trends with the test results for evaluating the effects of various parameters on the shear friction strength of rough construction joints. According to the proposed model, the values of cohesion and coefficient of friction for concrete could be determined as 0.11 fc′0.65 and 0.64, respectively, for smooth construction joints and 0.27 fc′0.65 and 0.95, respectively, for rough construction joints, where fc′ is the compressive strength of concrete.


Author(s):  
Keun-Hyeok Yang ◽  
Kyung-Ho Lee

Abstract The objective of this study is to assess the shear friction characteristics of lightweight aggregate concrete (LWAC) prepared using artificially expanded bottom ash and dredged soil granules. A total of 37 concrete mixtures were prepared under the classification of three series. In the first and second series, the natural sand content for replacing lightweight fine aggregates and the water-to-cement ratio varied to obtain different densities and compressive strengths of concrete. The third series was designed to estimate the effect of the maximum aggregate size on the friction resistance along the shear crack plane of the monolithic interfaces. The frictional angle of the LWAC tested was formulated as a function of the ratio of the effective tensile and compressive strengths of concrete through the expansion of the integrated mathematical models proposed by Kwon et al., based on the upper-bound theorem of concrete plasticity. When predicting the shear friction strength of LWAC, the present mathematical model exhibits relatively good accuracy, yielding the mean and standard deviation of the ratios between experiments and predictions of 1.06 and 0.14, respectively, whereas the empirical equations proposed by the AASHTO provision and Mattock underestimated the results. Ultimately, an advanced modification factor for shear design of LWAC is proposed as a function of the density and compressive strength of concrete and the maximum size of aggregates.


2021 ◽  
Vol 238 ◽  
pp. 112211
Author(s):  
Jin Xia ◽  
Kuang-yi Shan ◽  
Xiao-hui Wu ◽  
Run-li Gan ◽  
Wei-liang Jin

Sign in / Sign up

Export Citation Format

Share Document